References and Notes
1a
Brockmann H.
Lenk W.
Schwantje G.
Zeeck A.
Tetrahedron Lett.
1966,
3525
1b
Brockmann H.
Lenk W.
Schwantje G.
Zeeck A.
Chem. Ber.
1969,
102:
126
1c
Brockmann H.
Zeeck A.
Chem. Ber.
1970,
103:
1709
2a
Goldman ME.
Salituro GS.
Bowen JA.
Williamson JM.
Zink L.
Schleif WA.
Emini EA.
Mol. Pharmacol.
1990,
38:
20
2b
Mizushina Y.
Ueno T.
Oda M.
Yamaguchi T.
Saneyoshi M.
M .
Sakaguchi K.
Biochim. Biophys. Acta
2000,
1523:
172
3a
Coronelli C.
Pagani H.
Bardone MR.
Lancini GC.
J. Antibiot.
1974,
27:
161
3b
Bardone MR.
Martinelli E.
Zerilli LF.
Cornelli C.
Tetrahedron
1974,
30:
2747
4
Trani A.
Dallanoce C.
Pranzone G.
Ripamonti F.
Goldstein BP.
Ciabatti R.
J. Med. Chem.
1997,
40:
967
5a
Chino M.
Nishikawa K.
Umekia M.
Hayashi C.
Yamazaki T.
Tsuchida T.
Sawa T.
Hamada M.
Takeuchi T.
J. Antibiot.
1996,
49:
752
5b
Chino M.
Nishikawa K.
Tsuchida T.
Sawa R.
Nakamura H.
Nakamura KT.
Muraoka Y.
Ikeda D.
Naganawa H.
Sawa T.
Takeuchi T.
J. Antibiot.
1997,
50:
143
6 For a review on the rubromycins, see: Brasholz M.
Sörgel S.
Azap C.
Reissig H.-U.
Eur. J. Org. Chem.
2007,
3801
7a
Qin D.
Ren RX.
Siu T.
Zheng C.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
4709
7b
Siu T.
Qin D.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
4713
7c
Akai S.
Kakiguchi K.
Nakamura Y.
Kuriwaki I.
Dohi T.
Harada S.
Kubo O.
Morita N.
Kita Y.
Angew. Chem. Int. Ed.
2007,
46:
7458
8a
Capecchi T.
de Koning CB.
Michael JP.
Tetrahedron Lett.
1998,
39:
5429
8b
Capecchi T.
de Koning CB.
Michael JP.
J. Chem. Soc., Perkin Trans. 1
2000,
2681
8c
Tsang KY.
Brimble MA.
Bremner JB.
Org. Lett.
2003,
5:
4425
8d
Tsang KY.
Brimble MA.
Tetrahedron
2007,
63:
6015
8e
Waters SP.
Fennie MW.
Kozlowski MC.
Tetrahedron Lett.
2006,
47:
5409
8f
Waters SP.
Fennie MW.
Kozlowski MC.
Org. Lett.
2006,
8:
3243
8g
Sörgel S.
Azap C.
Reissig H.-U.
Org. Lett.
2006,
8:
4875
9a
Lindsey CC.
Wu KL.
Pettus TRR.
Org. Lett.
2006,
8:
2365
9b For a synthesis of bisbenzannelated 6,6-spiroketals, see: Zhou G.
Zheng D.
Da S.
Xie Z.
Li Y.
Tetrahedron Lett.
2006,
47:
3349
For syntheses of the isocoumarin subunit, see:
10a
Thrash TP.
Welton TD.
Behar V.
Tetrahedron Lett.
2000,
41:
29
10b
Waters SP.
Kozlowski MC.
Tetrahedron Lett.
2001,
42:
3567
10c
Brasholz M.
Reissig H.-U.
Synlett
2004,
2736
10d For syntheses of the naphthalene subunit of rubromycin and related structures, see: Brasholz M.
Luan X.
Reissig H.-U.
Synthesis
2005,
3571
10e
Xie X.
Kozlowski MC.
Org. Lett.
2001,
3:
2661
10f
Sörgel S.
Azap C.
Reissig H.-U.
Eur. J. Org. Chem.
2006,
4405
For a review of gold-catalyzed reactions, see:
11a
Hashmi ASK.
Gold Bull.
2004,
37:
51
11b
Hashmi ASK.
Chem. Rev.
2007,
107:
3180
12a
Liu Y.
Liu M.
Guo S.
Tu H.
Org. Lett.
2006,
8:
3445
12b
Barluenga J.
Diéguez A.
Fernández A.
Rodríguez F.
Fañanás FJ.
Angew. Chem. Int. Ed.
2006,
45:
2091
12c
Liu Y.
Song F.
Song Z.
Liu M.
Yan B.
Org. Lett.
2005,
7:
5409
12d
Belting V.
Krause N.
Org. Lett.
2006,
8:
4489
12e
Antoniotti S.
Genin E.
Michelet V.
Genêt J.-P.
J. Am. Chem. Soc.
2005,
127:
9976
12f
Liu B.
De Brabander JK.
Org. Lett.
2006,
8:
4907
12g
Li YF.
Zhou F.
Forsyth CJ.
Angew. Chem. Int. Ed.
2007,
46:
279
12h
Harkat H.
Weibel J.-M.
Pale P.
Tetrahedron Lett.
2007,
48:
1439
13 For a synthesis of alkyne 5, see: Trost BM.
Shen HC.
Li D.
Surivet JP.
Sylvain C.
J. Am. Chem. Soc.
2004,
126:
11966
For syntheses of o-iodophenols, see:
14a
Edgar KJ.
Falling SN.
J. Org. Chem.
1990,
55:
5287
14b
Schreiber FG.
Stevenson R.
J. Chem. Soc., Perkin Trans. 1
1977,
90
15a
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
4467
15b
Hiroya K.
Suzuki N.
Sakamoto T.
J. Chem. Soc., Perkin Trans. 1
2000,
4339
16 On the basis of the protocol described by Uitimoto,
[17]
palladium reagents were tried initially but spiroketal 7a was isolated in very low yields. Treatment of 6a with 5 mol% of PdCl2 in refluxing MeCN for 2 d afforded spiroketal 7a in only 5% yield. Even with 1.0 equiv of PdCl2 or the reaction was performed in sealed tube at 120 °C, the yield of 7a was still as low as 20% and 10%, respectively. Only trace of 7a was isolated by using PdCl2(PhCN)2 and PdCl2(MeCN)2 in Et2O at r.t.
17
Utimoto K.
Pure Appl. Chem.
1983,
55:
1845
18 We treated 6a with 10 mol% of Ph3PAuCl/AgOTf and 20 mol% of PTSA in CH2Cl2 at r.t. for 2 d provided the aromatic spiroketal 7a in 61% yield.
19
General Procedure for Gold-Catalyzed Spiroketalization
Under argon, PPh3AuCl (9.5 mg, 0.02 mmol) and AgOTf (5.2 mg, 0.02 mmol) were added to a stirred solution of 6a (48.0 mg, 0.2 mmol) in CH2Cl2 (4 mL). After the reaction mixture had been stirred at r.t. for 2 d, the solvent was removed and the residue purified by flash chromatography on silica gel (hexane-EtOAc, 8:1 v/v) to give the bisspiroketal 7a (30.0 mg, 62%) as a white solid.
20
Spectral Data for Selected Compounds (Table 2)
Compound 7b: white solid; mp 115-117 °C. 1H NMR (300 MHz, CDCl3): δ = 7.13-7.07 (m, 2 H), 7.04 (s, 1 H), 6.95-6.88 (m, 2 H), 6.78 (d, J = 8.4 Hz, 1 H), 6.68 (d, J = 8.1 Hz, 1 H), 3.40 (d, J = 16.5 Hz, 1 H), 3.30-3.18 (m, 2 H), 2.81 (ddd, J = 16.5, 6.0, 2.4 Hz, 1 H), 2.35-2.29 (m, 4 H), 2.17 (td, J = 12.6, 6.3 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 155.8, 152.3, 130.4, 129.1, 128.4, 127.4, 125.4, 125.3, 121.4, 121.1, 117.1, 109.4, 109.0, 41.9, 30.4, 21.9, 20.8. IR: ν = 3020 (CH, arom.), 2925 (CH), 1584, 1489 (ArC=C), 1080, 1045 (CO) cm-1. ESI-HRMS: m/z calcd for C17H16O2Na [M + Na]+: 275.1043; found: 275.1046.
Compound 7c: pale yellow solid; mp 173-175 °C. 1H NMR (300 MHz, CDCl3): δ = 7.26 (s, 1 H), 7.19-7.08 (m, 3 H), 6.91 (td, J = 7.2, 1.2 Hz, 1 H), 6.79 (d, J = 8.4 Hz, 1 H), 6.72 (d, J = 8.1 Hz, 1 H), 3.44 (d, J = 16.2 Hz, 1 H), 3.31-3.19 (m, 2 H), 2.81 (ddd, J = 16.5, 6.0, 2.4 Hz, 1 H), 2.32 (ddd, J = 13.5, 6.0, 3.0 Hz, 1 H), 2.19 (td, J = 12.3, 6.3 Hz, 1 H), 1.31 (s, 9 H). 13C NMR (75 MHz, CDCl3): δ = 155.7, 152.4, 144.1, 129.1, 127.4, 124.9, 124.8, 121.8, 121.4, 121.1, 117.1, 109.1, 109.0, 42.1, 34.3, 31.7, 30.5, 21.9. IR: ν = 3021 (CH, arom.), 2962 (CH), 1583, 1492 (ArC=C), 1076, 1046 (CO) cm-1. ESI-HRMS: m/z calcd for C20H23O2 [M + H]+: 295.1693; found: 295.1687.
Compound 7d: pale yellow solid; mp 154-155 °C. 1H NMR (300 MHz, CDCl3): δ = 7.54 (d, J = 8.2 Hz, 2 H), 7.47-7.37 (m, 4 H), 7.30 (t, J = 7.5 Hz, 1 H), 7.13 (t, J = 8.1 Hz, 2 H), 6.94 (t, J = 7.5 Hz, 1 H), 6.88-6.81 (m, 2 H), 3.51 (d, J = 16.2 Hz, 1 H), 3.37-3.22 (m, 2 H), 2.84 (ddd, J = 16.5, 6.0, 2.7 Hz, 1 H), 2.36 (ddd, J = 13.5, 6.0, 2.7 Hz, 1 H), 2.22 (td, J = 12.9, 6.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 157.5, 152.2, 141.3, 134.8, 129.1, 128.7, 127.5, 127.2, 126.9, 126.6, 126.0, 123.7, 121.4, 121.2, 117.1, 110.0, 109.4, 41.9, 30.4, 21.9. IR: ν = 3032 (CH, arom.), 2925 (CH), 1583, 1480 (ArC=C), 1082, 1046 (CO) cm-1. ESI-HRMS: m/z calcd for C22H19O2 [M + H]+: 315.1380; found: 315.1378.
21a
Li XW.
Chianese AR.
Vogel T.
Crabtree RH.
Org. Lett.
2005,
7:
5437
21b
Fugami K.
Hagiwara K.
Okeda T.
Kosugi M.
Chem. Lett.
1998,
81