References and Notes
For a detailed discussion on the tautomerism of pyrazolones, see:
1a
Holzer W.
Kautsch C.
Laggner C.
Claramunt RM.
Pérez-Torralba M.
Alkorta I.
Elguero J.
Tetrahedron
2004,
60:
6791 ; and references cited therein
1b
Katritzky AR.
Maine FW.
Tetrahedron
1964,
20:
299
For the synthesis of 4-acyl/carboxyl pyrazolones, see:
2a
Jensen BS.
Acta Chem. Scand.
1959,
13:
1668
2b
Lopez R.
León G.
Oliva A.
J. Heterocycl. Chem.
1995,
32:
1377
For examples of reactions at C-4, see:
3a Bromination/nitration: Das S.
Mittra AS.
J. Indian Chem. Soc.
1978,
55:
520
3b Azirine formation: Holzer W.
Claramunt RM.
Pérez-Torralba M.
Guggi D.
Brehmer TH.
J. Org. Chem.
2003,
68:
7943
4a
Holzer W.
Plagens B.
Lorenz K.
Heterocycles
1997,
45:
309
4b
Subasinghe NL.
Ali F.
Illig CR.
Rudolph MJ.
Lein S.
Khalil E.
Soll RM.
Bone RF.
Spurlino JC.
Des Jarlais RL.
Crysler CS.
Cummings MD.
Morris PE.
Kilpatrick JM.
Babu YS.
Bioorg. Med. Chem. Lett.
2004,
14:
3043
O-Methylation was assigned based on 1 H NMR chemical shifts:
5a
Ogawa K.
Terada T.
Honna T.
Chem. Pharm. Bull.
1984,
32:
930
5b
Bregant N.
Perina I.
Malnar M.
Croat. Chim. Acta
1977,
49:
813
6a
Holzer W.
Plagens B.
Sci. Pharm.
1996,
64:
455 ; and references cited therein
6b
Holzer W.
Schmid E.
J. Heterocycl. Chem.
1995,
32:
1341
7a
Terebenina A.
Dimitrova K.
Iordanov B.
Chervenakov P.
Borisov G.
Izv. Khim.
1985,
18:
31 ; Chem. Abstr. 1986 , 104 , 148787
7b inventors; JP 59181259.
; Chem. Abstr. 1985 , 102 , 113480
8a
Khan MA.
Ellis GP.
Pagotto MC.
J. Heterocycl. Chem.
2001,
38:
193
8b
Rachedi Y.
Hamdi M.
Sakellariou R.
Speziale V.
Synth. Commun.
1991,
21:
1189
8c
Wise LD.
Butler DE.
DeWald HA.
Lustgarten DM.
Pattison IC.
Schweiss DN.
Coughenour LL.
Downs DA.
Heffner TG.
Pugsley TA.
J. Med. Chem.
1987,
30:
1807
9
Holzer W.
Hahn K.
J. Heterocycl. Chem.
2003,
40:
303
10a
Juršić B.
Bregant N.
Synth. Commun.
1989,
19:
2087
10b
Holzer W.
Hahn K.
Brehmer T.
Claramunt RM.
Pérez-Torralba M.
Eur. J. Org. Chem.
2003,
1209
11a
Sanghvi YS.
Upadhya KG.
Dalley NK.
Ronibs RK.
Revankar GR.
Nucleosides Nucleotides
1987,
6:
737
11b
Anderson J.
Cottam HB.
Larson SB.
J. Heterocycl. Chem.
1989,
27:
439
11c Esanu A. inventors; BE 902231.
; Chem. Abstr. 1986 , 104 , 110121
12a
Alberty JE.
Hukki J.
Laitinen P.
Myry J.
Arzneim. Forsch.
1967,
17:
214 ; Chem. Abstr. , 1967 , 67 , 43734
12b
Sammour A.
Raouf AA.-E.
Elkasaby M.
Hassan MA.
Egypt. J. Chem.
1972,
15:
429
13
Chiba P.
Holzer W.
Landau M.
Bechmann G.
Lorenz K.
Plagens B.
Hitzler M.
Richter E.
Ecker G.
J. Med. Chem.
1998,
41:
4001
14 The only other example relevant to epoxide opening is found in the reaction of pyrazolone with the intermediate derived from pyrimidone and epichlorohydrin under basic conditions, possibly proceeded via an epoxide intermediate formed in situ: Krivonogov VP.
Kozlova GG.
Sivkova GA.
Spirikhin LV.
Abdrakhmanov IB.
Murinov YuI.
Tolstikov GA.
Russ. J. Org. Chem.
2003,
39:
257
15
Duprez V.
Heumann A.
Tetrahedron Lett.
2004,
45:
5697
16 The structure of 2 was confirmed based on an alternative synthesis in ca. 10% overall yield (Scheme
[2 ]
).
Scheme 2
17
General Procedures for Method A
To a stirring suspension of 1 (15.0 g, 49 mmol) in dry MeCN (100 mL) at 0 °C was added Mg(ClO4 )2 (33 g, 146 mmol) in 3 portions over 1 min. After the reaction temperature returned to 0 °C, the epoxide was added. The flask was equipped with a reflux condenser and was heated for the specified time and temperature. The solution was then concentrated under reduced pressure, dissolved in CHCl3 (100 mL), chilled to 10 °C, and quenched with ice-cold water (200 mL). The resulting biphasic solutions were stirred for 1 h and separated. The aqueous layer was extracted with CHCl3 (2 × 50 mL), and the combined organic layers were washed with NH4 Cl (sat.), dried over MgSO4 , and concentrated. The crude product was purified on SiO2 (120 g) chromatography eluting with a gradient of 1-2.5% of MeOH-CH2 Cl2 .
General Procedure for Method B
To a stirring suspension of 1 (5.0 g, 16 mmol) in chlorobenzene (25 mL) at 0 °C was added a solution of Me3 Al (2.0 M in toluene, 24 mL, 49 mmol) under nitrogen. To the resulting clear solution was added the epoxide, and the mixture was stirred at 23 °C. The reaction was monitored by LCMS and more epoxide was added if the reaction stalled. Upon completion, the mixture was diluted with THF (100 mL), quenched with Na2 SO4 ·10H2 O (6 g), and stirred for 24 h. The salts were removed by filtration (glass frit) and washed with EtOAc (100 mL). The filtrate was washed with HCl (1 N, 20 mL) and NH4 Cl (sat., 20 mL), dried over MgSO4 , and concentrated. The crude product was purified on SiO2 (40 g) chromatography eluting with 25-75% of EtOAc in hexane.
18 All compounds were characterized by 1 H NMR and LC-MS to be >95% pure except for 3 that was further derivatized via the mesylate. Selected 1 H NMR [(400 MHz, CHCl3 -d
1 ), δ in ppm] data are provided for compounds listed in Table
[1 ]
: Compound 4 : 0.95 (d, J = 6.26 Hz, 3 H), 2.65 (s, 3 H), 3.38 (dd, J = 14.87, 1.76 Hz, 1 H), 3.43 (s, 1 H), 3.65 (dd, J = 14.97, 9.88 Hz, 1 H), 3.94-4.05 (m, 1 H), 5.23 (s, 2 H), 7.20-7.39 (m, 5 H) 7.39-7.49 (m, 5 H). Compounds 5 and 6 : 0.74 (t, J = 7.43 Hz, 3 H), 1.18-1.37 (m, 2 H), 2.67 (s, 3 H), 3.55 (d, J = 13.30 Hz, 1 H), 3.61-3.77 (m, 2 H), 5.27 (d, J = 3.52 Hz, 2 H), 7.27-7.39 (m, 5 H), 7.41-7.51 (m, 5 H). Compound 7 : 2.68 (s, 3 H), 3.21-3.34 (m, 2 H), 3.65-3.78 (m, 1 H), 3.80-3.90 (m, 1 H), 4.02-4.12 (m, 1 H), 5.16-5.31 (m, 2 H), 5.73 (br s, 1 H), 7.28-7.35 (m, 5 H), 7.36-7.51 (m, 5 H). Compound 8 : 0.68 (d, J = 6.85 Hz, 3 H), 0.74 (d, J = 6.85 Hz, 3 H), 1.49 (dd, J = 12.81, 6.75 Hz, 1 H), 2.67 (s, 3 H), 3.25 (br s, 1 H), 3.46-3.53 (m, 1 H), 3.58-3.64 (m, 1 H), 3.70-3.80 (m, 1 H), 5.29 (q, J = 12.78 Hz, 2 H), 7.28-7.41 (m, 6 H), 7.42-7.50 (m, 4 H). Compound 9 : 0.95 (s, 6 H), 2.65 (s, 3 H), 3.77 (s, 2 H), 4.79 (s, 1 H), 5.21 (s, 2 H), 7.23 (d, J = 7.43 Hz, 2 H), 7.27-7.33 (m, 1 H), 7.37 (q, J = 7.50 Hz, 3 H), 7.42-7.47 (m, 2 H), 7.50 (t, J = 7.73 Hz, 2 H). Compound 10 : 0.74 (t, J = 7.53 Hz, 3 H), 0.82-0.93 (m, 1 H), 1.02 (s, 3 H), 1.23-1.43 (m, 2 H), 2.72 (s, 3 H), 3.68-3.89 (m, 2 H), 5.30-5.33 (m, 2 H), 7.21-7.27 (m, 3 H), 7.29-7.37 (m, 3 H), 7.42-7.53 (m, 4 H). Compound 11 : 1.05 (d, J = 6.1 Hz, 3 H), 1.41 (d, J = 7.2 Hz, 3 H), 2.12 (d, J = 3.3 Hz, 1 H), 3.75-3.85 (m, 1 H), 2.70 (s, 3 H), 3.87-3.97 (m, 1 H), 5.29 (s, 2 H), 7.22-7.29 (m, 3 H), 7.29-7.35 (m, 2 H), 7.35-7.42 (m, 1 H), 7.42-7.51 (m, 4 H).
19
Overman LE.
Flippin LA.
Tetrahedron Lett.
1981,
22:
195
20 For an example of epoxide activation with AlMe3 , see: Schreiber SL.
J. Am. Chem. Soc.
1980,
102:
6163
21a
Chini M.
Croti P.
Macchia F.
Tetrahedron Lett.
1990,
31:
4661
21b
Schoffers E.
Tran SD.
Mace K.
Heterocycles
2003,
60:
769
21c
Saladino R.
Ciambecchini U.
Hanessian S.
Eur. J. Org. Chem.
2003,
4401