Semin Musculoskelet Radiol 2007; 11(4): 301-311
DOI: 10.1055/s-2008-1060333
© Thieme Medical Publishers

The Current Status of Bone Scintigraphy in Malignant Diseases

Bahar Dasgeb1 , Michael H. Mulligan1 , Chun K. Kim1
  • 1Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
Further Information

Publication History

Publication Date:
07 March 2008 (online)

ABSTRACT

For the past few decades, planar bone scintigraphy has been the most frequently performed imaging study in the evaluation of metastatic bone disease. Although scintigraphic findings alone are often nonspecific for skeletal pathologies, this technique reportedly has an exquisite sensitivity. However, recently accumulated data on the efficacy of positron emission tomography with fluorine-18 fluorodeoxyglucose and fluorine-18 sodium fluoride as well as magnetic resonance imaging for evaluating skeletal metastatic disease now indicate that conventional planar bone scintigraphy is not very sensitive in the detection of metastatic bone lesions in selected malignancies. Nevertheless, bone scintigraphy still remains the primary imaging modality for evaluation of metastatic bone disease owing mainly to its cost effectiveness and wide availability. In addition, recently introduced hybrid imaging systems combining single-photon emission computed tomography and spiral computed tomography, although not widely available yet, increase considerably both the sensitivity and specificity of bone scintigraphy. This article focuses primarily on the current role of bone scintigraphy and its strengths and weaknesses in assessing different types of malignant diseases relative to other imaging modalities in selected malignancies.

REFERENCES

  • 1 Van der Wall H, Clarke S. The evaluation of malignancy: metastatic bone disease. In: Ell PJ, Gambhir SS Nuclear Medicine in Clinical Diagnosis and Treatment. Edinburgh; Churchill Livingstone 2004: 641-655
  • 2 Padhani A, Husband J. Bone metastases. In: Husband JES, Reznek RH Imaging in Oncology. Oxford; Isis Medical Media 1998: 765-787
  • 3 Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities.  J Nucl Med. 2005;  46 1356-1367
  • 4 Kricun M E. Red-yellow marrow conversion: its effect on the location of some solitary bone lesions.  Skeletal Radiol. 1985;  14 10-19
  • 5 Rybak L D, Rosenthal D I. Radiological imaging for the diagnosis of bone metastases.  Q J Nucl Med. 2001;  45 53-64
  • 6 Tryciecky E W, Gottschalk A, Ludema K. Oncology imaging interaction of nuclear medicine with CT and MRI using the bone scan as a model.  Semin Nucl Med. 1997;  27 142-151
  • 7 Vanel D, Dromain C, Tardivon A. MRI of bone marrow disorders.  Eur Radiol. 2000;  10 224-229
  • 8 Feun L G, Savaraj N. Detection of occult bone metastases by MRI scan.  J Fla Med Assoc. 1990;  77 881-883
  • 9 Schmidt G P, Schoenberg S O, Reiser M F, Baur-Melnyk A. Whole-body MR imaging of bone marrow.  Eur J Radiol. 2005;  55 33-40
  • 10 Kellenberger C J, Miller S F, Khan M, Gilday D L, Weitzman S, Babyn P S. Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children.  Eur Radiol. 2004;  14 1829-1841
  • 11 Lauenstein T C, Goehde S C, Herborn C U et al.. Whole-body MR imaging: evaluation of patients for metastases.  Radiology. 2004;  233 139-148
  • 12 Frat A, Agildere M, Gençoglu A et al.. Value of whole-body turbo short tau inversion recovery magnetic resonance imaging with panoramic table for detecting bone metastases: comparison with 99mTc-methylene diphosphonate scintigraphy.  J Comput Assist Tomogr. 2006;  30 151-156
  • 13 Goo H W, Choi S H, Ghim T, Moon H N, Seo J J. Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods.  Pediatr Radiol. 2005;  35 766-773
  • 14 Lauenstein T C, Freudenberg L S, Goehde S C et al.. Whole-body MRI using a rolling table platform for the detection of bone metastases.  Eur Radiol. 2002;  12 2091-2099
  • 15 Nakanishi K, Kobayashi M, Takahashi S et al.. Whole body MRI for detecting metastatic bone tumor: comparison with bone scintigrams.  Magn Reson Med Sci. 2005;  4 11-17
  • 16 Tamada T, Nagai K, Iizuka M et al.. Comparison of whole-body MR imaging and bone scintigraphy in the detection of bone metastases from breast cancer.  Nippon Igaku Hoshasen Gakkai Zasshi. 2000;  60 249-254
  • 17 Gates G F. SPECT bone scanning of the spine.  Semin Nucl Med. 1998;  28 78-94
  • 18 Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions.  Q J Nucl Med. 2001;  45 27-37
  • 19 Even-Sapir E, Martin R H, Barnes D C, Pringle C R, Iles S E, Mitchell M U. Role of SPECT in differentiating malignant from benign lesions in the lower thoracic and lower vertebrae.  Radiology. 1993;  187(1) 193-198
  • 20 Algra P R, Heimans J J, Valk J, Nautta J J, Lachniet M, Van Kooten B. Do metastases in vertebrae begin in the body or the pedicles? Imaging study in 45 patients.  AJR Am J Roentgenol. 1992;  158 1275-1279
  • 21 Pfannenberg A C, Eschmann S M, Horger M et al.. Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms.  Eur J Nucl Med Mol Imaging. 2003;  30 835-843
  • 22 Aizer-Dannon A, Bar-Am A, Ron I G, Flusser G, Even-Sapir E. Fused functional-anatomic images of metastatic cancer of cervix obtained by a combined gamma camera and an X-ray tube hybrid system with an illustrative case and review of the 18F-fluorodeoxyglucose literature.  Gynecol Oncol. 2003;  90 453-457
  • 23 Krausz Y, Keidar Z, Kogan I et al.. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours.  Clin Endocrinol (Oxf). 2003;  59 565-573
  • 24 Even-Sapir E, Keidar Z, Sachs J et al.. The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms.  J Nucl Med. 2001;  42 998-1004
  • 25 Schillaci O, Danieli R, Manni C, Simonetti G. Is SPECT/CT with a hybrid camera useful to improve scintigraphic imaging interpretation?.  Nucl Med Commun. 2004;  25 705-710
  • 26 Gregory P L, Batt M E, Kerslake R W, Scammell B E, Webb J F. The value of combining single photon emission computerised tomography and computerised tomography in the investigation of spondylolysis.  Eur Spine J. 2004;  13 503-509
  • 27 Ruf J, Lehmkuhl L, Bertram H et al.. Impact of SPECT and integrated low-dose CT after radioiodine therapy on the management of patients with thyroid carcinoma.  Nucl Med Commun. 2004;  25 1177-1182
  • 28 Horger M, Eschmann S M, Pfannenberg C et al.. Evaluation of combined transmission and emission tomography for classification of skeletal lesions.  AJR Am J Roentgenol. 2004;  183 655-661
  • 29 Horger M, Eschmann S M, Pfannenberg C et al.. The value of SPET/CT in chronic osteomyelitis.  Eur J Nucl Med Mol Imaging. 2003;  30 1665-1673
  • 30 Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease.  Semin Nucl Med. 2006;  36 286-294
  • 31 Utsunomiya D, Shiraishi S, Imuta M et al.. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT.  Radiology. 2006;  238 264-271
  • 32 Blau M, Nagler W, Bender M A. Fluorine-18: A new isotope for bone scanning.  J Nucl Med. 1962;  3 332-334
  • 33 Blau M, Ganatra R, Bender M A. 18F-Fluoride for bone imaging.  Semin Nucl Med. 1972;  2 31-37
  • 34 Narita N, Kato K, Nakagaki H et al.. Distribution of fluoride concentration in the rat's bone.  Calcif Tissue Int. 1990;  46 200-204
  • 35 Ishiguro K, Nakagaki H, Tsuboi S et al.. Distribution of fluoride in cortical bone of human rib.  Calcif Tissue Int. 1993;  52 278-282
  • 36 Wootton R, Dore C. The single-passage extraction of 18F in rabbit bone.  Clin Phys Physiol Meas. 1986;  7 333-343
  • 37 Hawkins R A, Choi Y, Huang S C et al.. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET.  J Nucl Med. 1992;  33 633-642
  • 38 Petren-Mallmin M, Andreasson I, Ljunggren O et al.. Skeletal metastases from breast cancer: uptake of 18F-fluoride measured with positron emission tomography in correlation with CT.  Skeletal Radiol. 1998;  27 72-76
  • 39 Fogelman I, Cook G, Israel O et al.. Positron emission tomography and bone metastases.  Semin Nucl Med. 2005;  35 135-142
  • 40 Schirrmeister H, Guhlmann A, Elsner K et al.. Sensitivity in detecting osseous lesions depends on anatomic localization: Planar bone scintigraphy versus 18F PET.  J Nucl Med. 1999;  40 1623-1629
  • 41 Hetzel M, Arslandemir C, Konig H H et al.. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management.  J Bone Miner Res. 2003;  18 2206-2214
  • 42 Even-Sapir E, Metser U, Flusser G et al.. Assessment of malignant skeletal disease: initial experience with 18 F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT.  J Nucl Med. 2004;  45 272-278
  • 43 Hatanaka M. Transport of sugar in tumor cell membranes.  Biochim Biophys Acta. 1974;  355 77-104
  • 44 Torizuka T, Tamaki N, Inokuma T et al.. In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET.  J Nucl Med. 1995;  36 1811-1817
  • 45 Graham M M, Spence A M, Muzi M, Abbott G L. Deoxyglucose kinetics in a rat brain tumor.  J Cereb Blood Flow Metab. 1989;  9 315-322
  • 46 Merrall N W, Plevin R, Gould G W. Growth factors, mitogens, oncogenes and the regulation of glucose transport.  Cell Signal. 1993;  5 667-675
  • 47 Brown R S, Leung J Y, Fisher S J, Frey K A, Ethier S P, Wahl R L. Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake.  J Nucl Med. 1996;  37 1042-1047
  • 48 Cook G J, Houston S, Rubens R et al.. Detection of bone metastases in breast cancer by 18FDG PET: Differing metabolic activity in osteoblastic and osteolytic lesions.  J Clin Oncol. 1998;  16 3375-3379
  • 49 Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast.  Semin Nucl Med. 2006;  36 73-92
  • 50 Ohta M, Tokuda Y, Suzuki Y et al.. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy.  Nucl Med Commun. 2001;  22 875-879
  • 51 Yang S N, Liang J A, Lin F J et al.. Comparing whole body (18)F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer.  J Cancer Res Clin Oncol. 2002;  128 325-328
  • 52 Lonneux M, Borbath I I, Berliere M et al.. The place of whole-body PET FDG for the diagnosis of distant recurrence of breast cancer.  Clin Positron Imaging. 2000;  3 45-49
  • 53 Abe K, Sasaki M, Kuwabara Y et al.. Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer.  Ann Nucl Med. 2005;  19 573-579
  • 54 Nakai T, Okuyama C, Kubota T et al.. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer.  Eur J Nucl Med Mol Imaging. 2005;  32 1253-1258
  • 55 Uematsu T, Yuen S, Yukisawa S et al.. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer.  AJR Am J Roentgenol. 2005;  184 1266-1273
  • 56 Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT.  J Nucl Med. 2006;  47 287-297
  • 57 Schirrmeister H, Guhlmann A, Kotzerke J et al.. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography.  J Clin Oncol. 1999;  17 2381-2389
  • 58 Yeh K A, Fortunato L, Ridge J A et al.. Routine bone scanning in patients with T1 and T2 breast cancer: a waste of money.  Ann Surg Oncol. 1995;  2 319-324
  • 59 Smith T J, Davidson N E, Schapira D V et al.. American Society of Clinical Oncology 1998 update of recommended breast cancer surveillance guidelines.  J Clin Oncol. 1999;  17 1080-1082
  • 60 Lee J E, Park S S, Han W et al.. The clinical use of staging bone scan in patients with breast carcinoma: reevaluation by the 2003 American Joint Committee on Cancer staging system.  Cancer. 2005;  104 499-503
  • 61 Myers R E, Johnston M, Pritchard K, Levine M, Oliver T. Baseline staging tests in primary breast cancer: a practice guideline.  CMAJ. 2001;  164 1439-1444
  • 62 Janicek M J, Shaffer K. Scintigraphic and radiographic patterns of skeletal metastases in breast cancer: value of sequential imaging in predicting outcome.  Skeletal Radiol. 1995;  24 597-600
  • 63 Stafford S E, Gralow J R, Schubert E K et al.. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy.  Acad Radiol. 2002;  9 913-921
  • 64 Mortimer J E, Dehdashti F, Siegel B A, Trinkaus K, Katzenellenbogen J A, Welch M J. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer.  j Clin Oncol. 2001;  19 2797-2803
  • 65 Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature.  J Urol. 2004;  171 2122-2127
  • 66 Akin O, Hricak H. Imaging of prostate cancer.  Radiol Clin North Am. 2007;  45 207-222
  • 67 Warren K S, Chodak G W, See W A et al.. Are bone scans necessary in men with low prostate-specific antigen levels following localized therapy?.  J Urol. 2006;  176 70-73
  • 68 Liu I J, Zafar M B, Lai Y H et al.. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer.  Urology. 2001;  57 108-111
  • 69 Shreve P D, Grossman H B, Gross M D, Wahl R L. Metastatic prostate cancer: initial finding of PET 2-deoxyglucose-[F-18]fluoro-D-glucose.  Radiology. 1996;  199 751-756
  • 70 Morris M J, Akhurst T, Osman I et al.. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer.  Urology. 2002;  59 913-918
  • 71 Schoder H, Herrmann K, Gonen M et al.. 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy.  Clin Cancer Res. 2005;  11 4761-4769
  • 72 Hanagiri T, Kodate M, Nagashima A et al.. Bone metastasis after a resection of stage I and II primary lung cancer.  Lung Cancer. 2000;  27 199-204
  • 73 Rohren E M, Turkington T G, Coleman R E. Clinical applications of PET in oncology.  Radiology. 2004;  231 305-332
  • 74 Lardinois D, Weder W, Hany T F et al.. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography.  N Engl J Med. 2003;  348 2500-2507
  • 75 Cheran S K, Herndon J E, Patz E F. Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer.  Lung Cancer. 2004;  44 317-325
  • 76 Aflalo-Hazan V, Gutman F, Raileanu I et al.. 18F-FDG PET and bone scintigraphy to search for bone metastasis of lung cancer.  Rev Pneumol Clin. 2006;  62 164-169
  • 77 Schirrmeister H, Glatting G, Hetzel J et al.. Prospective evaluation of clinical value of planar bone scan, SPECT and 18F-labeled NaF PET in newly diagnosed lung cancer.  J Nucl Med. 2001;  42 1800-1804
  • 78 Moog F, Kotzerke J, Reske S N. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma.  J Nucl Med. 1999;  40 1407-1413
  • 79 Kostakoglu L, Coleman M, Leonard J P, Kuji I, Zoe H, Goldsmith S J. Positron emission tomography predicts prognosis after one cycle of chemotherapy in aggressive lymphoma and Hodgkin's disease.  J Nucl Med. 2002;  43 1018-1027
  • 80 Mikhaeel N G, Timothy A R, O'Doherty M J, Hain S, Maisey T. 18-FDG PET as a prognostic indicator in the treatment of aggressive non-Hodgkin's lymphoma: comparison with CT.  Leuk Lymphoma. 2000;  39 543-553
  • 81 Antoch G, Vogt F M, Freudenberg L S et al.. Whole-body dual modality PET/CT and whole-body MRI for tumour staging in oncology.  JAMA. 2003;  290 3199-3206
  • 82 Mulligan M E, Badros A Z. PET/CT and MR imaging in myeloma.  Skeletal Radiol. 2007;  36 5-16
  • 83 Durie B GM. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system.  Eur J Cancer. 2006;  42 1539-1543
  • 84 Kushner B H. Neuroblastoma: a disease requiring a multitude of imaging studies.  J Nucl Med. 2004;  45 1172-1188
  • 85 Schulte M, Brecht-Krauss D, Werner M et al.. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET.  J Nucl Med. 1999;  40 1637-1643
  • 86 Bredella M A, Caputo G R, Steinbach L S. Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas.  AJR Am J Roentgenol. 2002;  179 1145-1150
  • 87 McCarville M B, Christie R, Daw N C, Spunt S L, Kaste S C. PET/CT in the evaluation of childhood sarcomas.  AJR Am J Roentgenol. 2005;  184 1293-1304
  • 88 Hawkins D S, Rajendran J G, Conrad III E U, Bruckner J D, Eary J F. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography.  Cancer. 2002;  94 3277-3284
  • 89 Van Cann E M, Oyen W JG, Koole R, Stoelinga P JW. Bone SPECT reduces the number of unnecessary mandibular resections in patients with squamous cell carcinoma.  Oral Oncol. 2006;  42 409-414
  • 90 Zieron J O, Lauer I, Remmert S, Sieg P. Single photon emission tomography: scintigraphy in the assessment of mandibular invasion by head and neck cancer.  Head Neck. 2001;  23 979-984
  • 91 Imola M J, Gapany M, Grund F, Djalilian H, Fehling S, Adams G. Technetium 99m single positron emission computed tomography scanning for assessing mandible invasion in oral cavity cancer.  Laryngoscope. 2001;  111 373-381
  • 92 Goerres G W, Schmid D T, Schuknecht B, Eyrich G K. Bone invasion in patients with oral cavity cancer: comparison of conventional CT with PET/CT and SPECT/CT.  Radiology. 2005;  237 281-287
  • 93 Pezeshk P, Sadow C A, Winalski C S, Lang P K, Ready J E, Carrino J A. Usefulness of 18F-FDG PET-directed skeletal biopsy for metastatic neoplasm.  Acad Radiol. 2006;  13 1011-1015

Chun K KimM.D. 

Department of Radiology, University of Maryland Medical Center

22 S. Greene St., Baltimore, MD 21201

Email: ckim@umm.edu