Semin Musculoskelet Radiol 2007; 11(4): 312-321
DOI: 10.1055/s-2008-1060334
© Thieme Medical Publishers

PET/CT in Malignant Bone Disease

Einat Even-Sapir1
  • 1Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
Further Information

Publication History

Publication Date:
07 March 2008 (online)

ABSTRACT

The most commonly used positron emission tomography (PET) tracer in clinical practice, fluorine-18 fluorodeoxyglucose (18F-FDG) is a glucose analogue that directly gains entry in excess into tumor cells. It is therefore sensitive for the detection of early bone marrow involvement prior to any identifiable bone changes. The introduction of 18F-FDG-PET in the imaging algorithms of various malignant diseases often obviates the need to perform a separate assessment of malignant bone involvement with conventional bone scintigraphy. After therapy, disappearance of 18F-FDG accumulation indicates success even when the bone remains morphologically abnormal. Novel hybrid systems composed of PET and computed tomography (CT) allow for acquisition of both modalities in the same clinical setting and the generation of fused functional-anatomical images. This technique has been found to improve the diagnostic accuracy of PET in detecting malignant bone involvement. This article discusses the role of PET/CT, primarily 18F-FDG PET/CT, in the assessment of malignant bone involvement in patients with primary bone sarcomas, common solid malignancies, lymphoma, and multiple myeloma.

REFERENCES

  • 1 Padhani A, Husband J. Bone metastases. In: Husband JES, Reznek RH Imaging in Oncology. Oxford; Isis Medical Media 1998: 765-787
  • 2 Hamaoka T, Madewell J E, Podoloff D A, Hortobagyi G N, Ueno N T. Bone imaging in metastatic breast cancer.  J Clin Oncol. 2004;  22 2942-2953
  • 3 Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases.  Semin Nucl Med. 2005;  35 135-142
  • 4 Angtuaco E JC, Fassas A BT, Walker R, Sethi R H, Barlogie B. Multiple myeloma: clinical review and diagnostic imaging.  Radiology. 2004;  231 11-23
  • 5 Galasko C S. Mechanisms of lytic and blastic metastatic disease of bone.  Clin Orthop Relat Res. 1982;  169 20-27
  • 6 del Regato J A. Pathways of metastatic spread of malignant tumors.  Semin Oncol. 1977;  4 33-38
  • 7 Morgan-Parkes J H. Metastases: mechanisms, pathways, and cascades.  AJR Am J Roentgenol. 1995;  164(5) 1075-1082
  • 8 Kricun M E. Red-yellow marrow conversion: its effect on the location of some solitary bone lesions.  Skeletal Radiol. 1985;  14(1) 10-19
  • 9 Roodman G D. Mechanisms of bone metastasis.  N Engl J Med. 2004;  350 1655-1664
  • 10 Blake G M, Park-Holohan S J, Cook G J, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate.  Semin Nucl Med. 2001;  31 28-49
  • 11 Cook G J, Fogelman I. The role of positron emission tomography in skeletal disease.  Semin Nucl Med. 2001;  31 50-61
  • 12 Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities.  J Nucl Med. 2005;  46 1356-1367
  • 13 Aoki J, Watanabe H, Shinozaki T et al.. FDG PET of primary benign and malignant. bone tumors: standardized uptake value in 52 lesions.  Radiology. 2001;  219 774-777
  • 14 Dimitrakopoulou-Strauss A, Strauss L G, Heichel T et al.. The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions.  J Nucl Med. 2002;  43 510-518
  • 15 Rohren E M, Turkington T G, Coleman R E. Clinical applications of PET in oncology.  Radiology. 2004;  231 305-332
  • 16 Cook G J, Fogelman I. The role of positron emission tomography in the management of bone metastases.  Cancer. 2000;  88 2927-2933
  • 17 Franzius C, Sciuk J, Daldrup-Link H E, Jurgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy.  Eur J Nucl Med. 2000;  27 1305-1311
  • 18 Liu F Y, Chang J T, Wang H M et al.. [18F]fluorodeoxyglucose positron emission tomography is more sensitive than skeletal scintigraphy for detecting bone metastasis in endemic nasopharyngeal carcinoma at initial staging.  J Clin Oncol. 2006;  24(4) 599-604
  • 19 Cook G J, Houston S, Rubens R, Maisey M N, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions.  J Clin Oncol. 1998;  16 3375-3379
  • 20 Burgman P, Odonoghue J A, Humm J L, Ling C C. Hypoxia-induced increase in FDG uptake in MCF7 cells.  J Nucl Med. 2001;  42 170-175
  • 21 Metser U, Lerman H, Blank A, Lievshitz G, Bokstein F, Even-Sapir E. Malignant involvement of the spine: assessment by 18F-Fluorodeoxyglucose PET/CT.  J Nucl Med. 2004;  45 279-284
  • 22 Schulte M, Brecht-Krauss D, Heymer B et al.. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET.  J Nucl Med. 2000;  41 1695-1701
  • 23 Folpe A L, Lyles R H, Sprouse J T, Conrad III E U, Eary J F. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma.  Clin Cancer Res. 2000;  6 1279-1287
  • 24 Gallowitsch H J, Kresnik E, Gasser J et al.. F-18 fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging.  Invest Radiol. 2003;  38 250-256
  • 25 Israel O, Goldberg A, Nachtigal A et al.. FDG-PET and CT patterns of bone metastases and their relationship to previously administered anti-cancer therapy.  Eur J Nucl Med Mol Imaging. 2006;  33(11) 1280-1284
  • 26 Sugawara Y, Fisher S J, Zasadny K R, Kison P V, Baker L H, Wahl R L. Preclinical and clinical studies of bone marrow uptake of fluorine-18-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy.  J Clin Oncol. 1998;  16 173-180
  • 27 Clamp A, Danson S, Nguyen H, Cole D, Clemons M. Assessment of therapeutic response in patients with metastatic bone disease.  Lancet Oncol. 2004;  5 607-616
  • 28 Kazama T, Swanston N, Podoloff D A, Macapinlac H A. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow.  Eur J Nucl Med Mol Imaging. 2005;  32 1406-1411
  • 29 Bar-Shalom R, Yefremov N, Guralnik L et al.. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management.  J Nucl Med. 2003;  44 1200-1209
  • 30 Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith S J. PET/CT fusion imaging in differentiating physiologic from pathologic FDG uptake.  Radiographics. 2004;  24 1411-1431
  • 31 Gayed I, Vu T, Johnson M, Macapinlac H, Podoloff D. Comparison of bone and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in the evaluation of bony metastases in lung cancer.  Mol Imaging Biol. 2003;  5 26-31
  • 32 Boogerd W, van der Sande J J, Kroger R. Early diagnosis and treatment of spinal epidural metastasis in breast cancer: a prospective study.  J Neurol Neurosurg Psychiatry. 1992;  55 1188-1193
  • 33 Schirrmeister H, Guhlmann A, Kotzerke J et al.. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography.  J Clin Oncol. 1999;  17 2381-2389
  • 34 Even-Sapir E, Metser U, Flusser G et al.. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT.  J Nucl Med. 2004;  45 272-278
  • 35 Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high- risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT.  J Nucl Med. 2006;  47 287-297
  • 36 Brenner W, Bohuslavizki K H, Eary J F. PET imaging of osteosarcoma.  J Nucl Med. 2003;  44 930-942
  • 37 Hawkins D S, Schuetze S M, Butrynski J E et al.. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors.  J Clin Oncol. 2005;  23 8828-8834
  • 38 Folpe A L, Lyles R H, Sprouse J T, Conrad III E U, Eary J F. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma.  Clin Cancer Res. 2000;  6 1279-1287
  • 39 Eary J F, O'Sullivan F, Powitan Y et al.. Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis.  Eur J Nucl Med Mol Imaging. 2002;  29 1149-1154
  • 40 Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Hasegawa T. Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [18F]fluorodeoxyglucose positron emission tomography.  Eur J Nucl Med Mol Imaging. 2006;  33 683-691
  • 41 Pezeshk P, Sadow C A, Winalski C S, Lang P K, Ready J E, Carrino J A. Usefulness of 18F-FDG PET-directed skeletal biopsy for metastatic neoplasm.  Acad Radiol. 2006;  13 1011-1015
  • 42 Lodge M A, Lucas J D, Marsden P K et al.. A PET study of 18FDG uptake in soft tissue masses.  Eur J Nucl Med. 1999;  26 22-30
  • 43 Schleiermacher G, Peter M, Oberlin O et al.. Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor.  J Clin Oncol. 2003;  21 85-91
  • 44 Wuisman P, Enneking W F. Prognosis of patients who have osteosarcoma with skip metastasis.  J Bone Joint Surg Am. 1990;  72 60-68
  • 45 Cotterill S J, Ahrens S, Paulussen M et al.. Prognostic factors in Ewing's tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study Group.  J Clin Oncol. 2000;  18 3108-3114
  • 46 Franzius C, Daldrup-Link H E, Sciuk J et al.. FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT.  Ann Oncol. 2001;  12 479-486
  • 47 Franzius C, Daldrup-Link H E, Wagner-Bohn A et al.. FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging.  Ann Oncol. 2002;  13 157-160
  • 48 Paulussen M, Ahrens S, Burdach S et al.. Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies. European Intergroup Cooperative Ewing Sarcoma Studies.  Ann Oncol. 1998;  9 275-281
  • 49 Daldrup-Link H E, Franzius C, Link T M et al.. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET.  AJR Am J Roentgenol. 2001;  177 229-236
  • 50 Bielack S S, Kempf-Bielack B, Delling G et al.. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols.  J Clin Oncol. 2002;  20 776-790
  • 51 Abdel-Dayem H M. The role of nuclear medicine in primary bone and soft tissue tumors.  Semin Nucl Med. 1997;  27 355-363
  • 52 Jones D N, McCowage G B, Sostman H D et al.. Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET.  J Nucl Med. 1996;  37 1438-1444
  • 53 Hawkins D S, Rajendran J G, Conrad III E U, Bruckner J D, Eary J F. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography.  Cancer. 2002;  94 3277-3284
  • 54 Schulte M, Brecht-Krauss D, Werner M et al.. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET.  J Nucl Med. 1999;  40 1637-1643
  • 55 Lucas J D, O'Doherty M J, Wong J C et al.. Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas.  J Bone Joint Surg Br. 1998;  80 441-447
  • 56 Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine- 18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer.  Eur J Nucl Med. 1998;  25 1244-1247
  • 57 Kato H, Miyazaki T, Nakajima M. 657 Comparison between whole-body positron emission tomography and bone scintigraphy in evaluating bony metastases of esophageal carcinomas.  Anticancer Res. 2005;  25 4439-4444
  • 58 Yeh K A, Fortunato L, Ridge J A, Hoffman J P, Eisenberg B L, Sigurdson E R. Routine bone scanning in patients with T1 and T2 breast cancer: a waste of money.  Ann Surg Oncol. 1995;  2 319-324
  • 59 Schirrmeister H, Kuhn T, Guhlmann A et al.. Fluorine-18 2-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures.  Eur J Nucl Med. 2001;  28 351-358
  • 60 Maffioli L, Florimonte L, Pagani L, Butti I, Roca I. Breast cancer: diagnostic and therapeutic options.  Eur J Nucl Med Mol Imaging. 2004;  31 S143-S148
  • 61 Smith T J, Davidson N E, Schapira D V et al.. American Society of Clinical Oncology 1998 update of recommended breast cancer surveillance guidelines.  J Clin Oncol. 1999;  17 1080-1082
  • 62 Eubank W B, Mankoff D A. Current and future uses of positron emission tomography in breast cancer imaging.  Semin Nucl Med. 2004;  34 224-240
  • 63 Wahl R L. Current status of PET in breast cancer imaging, staging, and therapy.  Semin Roentgenol. 2001;  36 250-260
  • 64 Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast.  Semin Nucl Med. 2006;  36 73-92
  • 65 Nakai T, Okuyama C, Kubota T et al.. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer.  Eur J Nucl Med Mol Imaging. 2005;  32 1253-1258
  • 66 Abe K, Sasaki M, Kuwabara Y et al.. Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer.  Ann Nucl Med. 2005;  19 573-579
  • 67 Lonneux M, Borbath I, Berliere M, Kirkove C, Pauwels S. The place of whole-body PET FDG for the diagnosis of distant recurrence of breast cancer.  Clin Positron Imaging. 2000;  3 45-49
  • 68 Port E R, Yeung H, Gonen M et al.. (18)F-2-fluoro-2-deoxy-d: -glucose positron emission tomography scanning affects surgical management in selected patients with high-risk, operable breast carcinoma.  Ann Surg Oncol. 2006;  13 677-684
  • 69 Lardinois D, Weder W, Hany T F et al.. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography.  N Engl J Med. 2003;  348 2500-2507
  • 70 Cheran S K, Herndon J E, Patz E F. Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer.  Lung Cancer. 2004;  44 317-325
  • 71 Fricke E, Machtens S, Hofmann M et al.. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients.  Eur J Nucl Med. Mol Imaging. 2003;  30 607-611
  • 72 Schoder H, Larson S M. Positron emission tomography for prostate, bladder, and renal cancer.  Semin Nucl Med. 2004;  34 274-292
  • 73 Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature.  J Urol. 2004;  171 2122-2127
  • 74 Shreve P D, Grossman H B, Gross M D, Wahl R L. Metastatic prostate cancer: initial finding of PET 2-deoxyglucose-[F-18]fluoro-D-glucose.  Radiology. 1996;  199 751-756
  • 75 Jana S, Blaufox M D. Nuclear medicine studies of the prostate, testes, and bladder.  Semin Nucl Med. 2006;  36 51-72
  • 76 Morris M J, Akhurst T, Osman I et al.. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer.  Urology. 2002;  59 913-918
  • 77 Moog F, Kotzerke J, Reske S N. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma.  J Nucl Med. 1999;  40 1407-1413
  • 78 Schaefer N G, Strobel K, Taverna C, Hany T F. Bone involvement in patients with lymphoma: the role of FDG-PET/CT.  Eur J Nucl Med Mol Imaging. 2007;  34 60-67
  • 79 Guermazi A, Brice P, de Kerviler E E et al.. Extranodal Hodgkin disease: spectrum of disease.  Radiographics. 2001;  21 161-179
  • 80 Pakos E E, Fotopoulos A D, Ioannidis J P. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis.  J Nucl Med. 2005;  46 958-963
  • 81 Carr R, Barrington S F, Madan B et al.. Detection of lymphoma in bone marrow by whole body positron emission tomography.  Blood. 1998;  91 3340-3346
  • 82 Baar J, Burkes R L, Gospodarowicz M. Primary non-Hodgkin's lymphoma of bone.  Semin Oncol. 1999;  26 270-275
  • 83 Edeiken-Monroe B, Edeiken J, Kim E E. Radiologic concepts of lymphoma of bone.  Radiol Clin North Am. 1990;  28 841-864
  • 84 Even-Sapir E, Lievshitz G, Perry C, Herishanu Y, Lerman H, Metser U. Fluorine-18 fluorodeoxyglucose PET/CT patterns of extranodal involvement in patients with non-Hodgkin lymphoma and Hodgkin's disease.  Radiol Clin North Am. 2007;  45 697-709
  • 85 Durie B G, Waxman A D, D'Agnolo A, Williams C M. Whole-body 18F-FDG PET identifies high-risk myeloma.  J Nucl Med. 2002;  43 1457-1463
  • 86 Schirrmeister H, Bommer M, Buck A K et al.. Initial results in the assessment of multiple myeloma using F-18 FDG PET.  Eur J Nucl Med Mol Imaging. 2002;  29 361-366
  • 87 Nanni C, Zamagni E, Farsad M et al.. Role of (18)F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results.  Eur J Nucl Med Mol Imaging. 2006;  33 525-531
  • 88 Mahfouz T, Miceli M H, Saghafifar F et al.. 18F-fluorodeoxyglucose positron emission tomography contributes to the diagnosis and management of infections in patients with multiple myeloma: a study of 165 infectious episodes.  J Clin Oncol. 2005;  23 7857-7863

Einat Even-SapirM.D. Ph.D. 

Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center

6 Weizman St., Tel-Aviv, 64239 Israel

Email: evensap@tasmc.health.gov.il