Semin Musculoskelet Radiol 2007; 11(4): 322-334
DOI: 10.1055/s-2008-1060335
© Thieme Medical Publishers

Pediatric Musculoskeletal Nuclear Medicine

Jason J. Ma1 , Bobby K. Kang1 , S. Ted Treves1 , 2
  • 1Division of Nuclear Medicine, Department of Radiology, Children's Hospital Boston, Boston, Massachusetts
  • 2Department of Radiology, Harvard Medical School, Boston, Massachusetts
Further Information

Publication History

Publication Date:
07 March 2008 (online)

ABSTRACT

This article reviews the current role of nuclear medicine in common benign and malignant pediatric musculoskeletal conditions and discusses future applications.

REFERENCES

  • 1 Christensen S B, Krogsgaard O W. Localization of Tc-99m MDP in epiphyseal growth plates of rats.  J Nucl Med. 1981;  22(3) 237-245
  • 2 Cawley K A, Dvorak A D, Wilmot M D. Normal anatomic variant: scintigraphy of the ischiopubic synchondrosis.  J Nucl Med. 1983;  24(1) 14-16
  • 3 Kloiber R, Udjus K, McIntyre W, Jarvis J. The scintigraphic and radiographic appearance of the ischiopubic synchondroses in normal children and in osteomyelitis.  Pediatr Radiol. 1988;  18(1) 57-61
  • 4 Matheson G O, Clement D B, McKenzie D C, Taunton J E, Lloyd-Smith D R, MacIntyre J G. Stress fractures in athletes. A study of 320 cases.  Am J Sports Med. 1987;  15(1) 46-58
  • 5 Anderson M W, Greenspan A. Stress fractures.  Radiology. 1996;  199(1) 1-12
  • 6 Bellah R D, Summerville D A, Treves S T, Micheli L J. Low-back pain in adolescent athletes: detection of stress injury to the pars interarticularis with SPECT.  Radiology. 1991;  180(2) 509-512
  • 7 Rupani H D, Holder L E, Espinola D A, Engin S I. Three-phase radionuclide bone imaging in sports medicine.  Radiology. 1985;  156(1) 187-196
  • 8 Wigh R E. The thoracolumbar and lumbosacral transitional junctions.  Spine. 1980;  5(3) 215-222
  • 9 Wigh R E. The transitional lumbosacral osseous complex.  Skeletal Radiol. 1982;  8(2) 127-131
  • 10 Swischuk L E, John S D, Tschoepe E J. Upper tibial hyperextension fractures in infants: another occult toddler's fracture.  Pediatr Radiol. 1999;  29(1) 6-9
  • 11 Starshak R J, Simons G W, Sty J R. Occult fracture of the calcaneus-another toddler's fracture.  Pediatr Radiol. 1984;  14(1) 37-40
  • 12 Blumberg K, Patterson R J. The toddler's cuboid fracture.  Radiology. 1991;  179(1) 93-94
  • 13 Miller J H, Sanderson R A. Scintigraphy of toddler's fracture.  J Nucl Med. 1988;  29(12) 2001-2003
  • 14 Park H M, Kernek C B, Robb J A. Early scintigraphic findings of occult femoral and tibial fractures in infants.  Clin Nucl Med. 1988;  13(4) 271-275
  • 15 Treves S, Khettry J, Broker F H, Wilkinson R H, Watts H. Osteomyelitis: early scintigraphic detection in children.  Pediatrics. 1976;  57(2) 173-186
  • 16 Nade S. Acute haematogenous osteomyelitis in infancy and childhood.  J Bone Joint Surg Br. 1983;  65(2) 109-119
  • 17 Faden H, Grossi M. Acute osteomyelitis in children. Reassessment of etiologic agents and their clinical characteristics.  Am J Dis Child. 1991;  145(1) 65-69
  • 18 Asmar B I. Osteomyelitis in the neonate.  Infect Dis Clin North Am. 1992;  6(1) 117-132
  • 19 Schauwecker D S. The scintigraphic diagnosis of osteomyelitis.  AJR Am J Roentgenol. 1992;  158(1) 9-18
  • 20 Aronson J, Garvin K, Seibert J, Glasier C, Tursky E A. Efficiency of the bone scan for occult limping toddlers.  J Pediatr Orthop. 1992;  12(1) 38-44
  • 21 Howie D W, Savage J P, Wilson T G, Paterson D. The technetium phosphate bone scan in the diagnosis of osteomyelitis in childhood.  J Bone Joint Surg Am. 1983;  65(4) 431-437
  • 22 Mok P M, Reilly B J, Ash J M. Osteomyelitis in the neonate. Clinical aspects and the role of radiography and scintigraphy in diagnosis and management.  Radiology. 1982;  145(3) 677-682
  • 23 Kocher M S, Zurakowski D, Kasser J R. Differentiating between septic arthritis and transient synovitis of the hip in children: an evidence-based clinical prediction algorithm.  J Bone Joint Surg Am. 1999;  81(12) 1662-1670
  • 24 Bensahel H, Bok B, Cavailloles F, Csukonyi Z. Bone scintigraphy in Perthes disease.  J Pediatr Orthop. 1983;  3(3) 302-305
  • 25 Calver R, Venugopal V, Dorgan J, Bentley G, Gimlette T. Radionuclide scanning in the early diagnosis of Perthes' disease.  J Bone Joint Surg Br. 1981;  63-B(3) 379-382
  • 26 Sutherland A D, Savage J P, Paterson D C, Foster B K. The nuclide bone-scan in the diagnosis and management of Perthes' disease.  J Bone Joint Surg Br. 1980;  62(3) 300-306
  • 27 Cavailloles F, Bok B, Bensahel H. Bone scintigraphy in the diagnosis and follow up of Perthes' disease.  Eur J Nucl Med. 1982;  7(7) 327-330
  • 28 Sebag G H. Disorders of the hip.  Magn Reson Imaging Clin N Am. 1998;  6(3) 627-641
  • 29 Comte F, De Rosa V, Zekri H et al.. Confirmation of the early prognostic value of bone scanning and pinhole imaging of the hip in Legg-Calvé-Perthes disease.  J Nucl Med. 2003;  44(11) 1761-1766
  • 30 Lisbona R, Rosenthall L. Role of radionuclide imaging in osteoid osteoma.  AJR Am J Roentgenol. 1979;  132(1) 77-80
  • 31 Roach P J, Connolly L P, Zurakowski D, Treves S T. Osteoid osteoma: comparative utility of high-resolution planar and pinhole magnification scintigraphy.  Pediatr Radiol. 1996;  26(3) 222-225
  • 32 Papagelopoulos P J, Mavrogenis A F, Kyriakopoulos C K et al.. Radiofrequency ablation of intra-articular osteoid osteoma of the hip.  J Int Med Res. 2006;  34(5) 537-544
  • 33 Sty J, Simons G. Intraoperative 99m technetium bone imaging in the treatment of benign osteoblastic tumors.  Clin Orthop Relat Res. 1982;  (165) 223-227
  • 34 Kirks D R, Taybi H, Histiocytosis X. St. Louis; Mosby 1977
  • 35 Dogan A S, Conway J J, Miller J H, Grier D, Bhattathiry M M, Mitchell C S. Detection of bone lesions in Langerhans cell histiocytosis: complementary roles of scintigraphy and conventional radiography.  J Pediatr Hematol Oncol. 1996;  18(1) 51-58
  • 36 Youmans D C, Don S, Hildebolt C, Shackelford G D, Luker G D, McAlister W H. Skeletal surveys for child abuse: comparison of interpretation using digitized images and screen-film radiographs.  AJR Am J Roentgenol. 1998;  171(5) 1415-1419
  • 37 Tung G A, Kumar M, Richardson R C, Jenny C, Brown W D. Comparison of accidental and nonaccidental traumatic head injury in children on noncontrast computed tomography.  Pediatrics. 2006;  118(2) 626-633
  • 38 Sty J R, Starshak R J. The role of bone scintigraphy in the evaluation of the suspected abused child.  Radiology. 1983;  146(2) 369-375
  • 39 Jaudes P K. Comparison of radiography and radionuclide bone scanning in the detection of child abuse.  Pediatrics. 1984;  73(2) 166-168
  • 40 Haase G M, Ortiz V N, Sfakianakis G N, Morse T S. The value of radionuclide bone scanning in the early recognition of deliberate child abuse.  J Trauma. 1980;  20(10) 873-875
  • 41 Aoki J, Watanabe H, Shinozaki T et al.. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions.  Radiology. 2001;  219(3) 774-777
  • 42 Goodin G S, Shulkin B L, Kaufman R A, McCarville M B. PET/CT characterization of fibroosseous defects in children: 18F-FDG uptake can mimic metastatic disease.  AJR Am J Roentgenol. 2006;  187(4) 1124-1128
  • 43 Rees C R, Siddiqui A R, duCret R. The role of bone scintigraphy in osteogenic sarcoma.  Skeletal Radiol. 1986;  15(5) 365-367
  • 44 Goldstein H, McNeil B J, Zufall E, Jaffe N, Treves S. Changing indications for bone scintigraphy in patients with osteosarcoma.  Radiology. 1980;  135(1) 177-180
  • 45 Brenner W, Bohuslavizki K H, Eary J F. PET imaging of osteosarcoma.  J Nucl Med. 2003;  44(6) 930-942
  • 46 McCarville M B, Christie R, Daw N C, Spunt S L, Kaste S C. PET/CT in the evaluation of childhood sarcomas.  AJR Am J Roentgenol. 2005;  184(4) 1293-1304
  • 47 Aboulafia A J, Malawer M M. Surgical management of pelvic and extremity osteosarcoma.  Cancer. 1993;  71(10, suppl) 3358-3366
  • 48 Gyorke T, Zajic T, Lange A et al.. Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumours.  Nucl Med Commun. 2006;  27(1) 17-24
  • 49 Shulkin B L, Shapiro B, Hutchinson R J. Iodine-131-metaiodobenzylguanidine and bone scintigraphy for the detection of neuroblastoma.  J Nucl Med. 1992;  33(10) 1735-1740
  • 50 Hadj-Djilani N L, Lebtahi N E, Delaloye A B, Laurini R, Beck D. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology.  Eur J Nucl Med. 1995;  22(4) 322-329
  • 51 Kushner B H. Neuroblastoma: a disease requiring a multitude of imaging studies.  J Nucl Med. 2004;  45(7) 1172-1188
  • 52 Friedberg J W, Fischman A, Neuberg D et al.. FDG-PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison.  Leuk Lymphoma. 2004;  45(1) 85-92
  • 53 Yamamoto F, Tsukamoto E, Nakada K et al.. 18F-FDG PET is superior to 67Ga SPECT in the staging of non-Hodgkin's lymphoma.  Ann Nucl Med. 2004;  18(6) 519-526
  • 54 Rini J N, Nunez R, Nichols K et al.. Coincidence-detection FDG-PET versus gallium in children and young adults with newly diagnosed Hodgkin's disease.  Pediatr Radiol. 2005;  35(2) 169-178
  • 55 Lin P, Chu J, Kneebone A et al.. Direct comparison of 18F-fluorodeoxyglucose coincidence gamma camera tomography with gallium scanning for the staging of lymphoma.  Intern Med J. 2005;  35(2) 91-96
  • 56 Jhanwar Y S, Straus D J. The role of PET in lymphoma.  J Nucl Med. 2006;  47(8) 1326-1334
  • 57 Schulte M, Brecht-Krauss D, Heymer B et al.. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET.  J Nucl Med. 2000;  41(10) 1695-1701
  • 58 Franzius C, Bielack S, Flege S, Sciuk J, Jurgens H, Schober O. Prognostic significance of (18)F-FDG and (99m)Tc-methylene diphosphonate uptake in primary osteosarcoma.  J Nucl Med. 2002;  43(8) 1012-1017
  • 59 Rini J N, Palestro C J. Imaging of infection and inflammation with 18F-FDG-labeled leukocytes.  Q J Nucl Med Mol Imaging. 2006;  50(2) 143-146
  • 60 Stumpe K D, Strobel K. 18F FDG-PET imaging in musculoskeletal infection.  Q J Nucl Med Mol Imaging. 2006;  50(2) 131-142
  • 61 Vos F J, Bleeker-Rovers C P, Corstens F H, Kullberg B J, Oyen W J. FDG-PET for imaging of non-osseous infection and inflammation.  Q J Nucl Med Mol Imaging. 2006;  50(2) 121-130
  • 62 Green J R, Reeve J, Tellez M, Veall N, Wootton R. Skeletal blood flow in metabolic disorders of the skeleton.  Bone. 1987;  8(5) 293-297
  • 63 Nahmias C, Cockshott W P, Belbeck L W, Garnett E S. Measurement of absolute bone blood flow by positron emission tomography.  Skeletal Radiol. 1986;  15(3) 198-200
  • 64 Grynpas M D. Fluoride effects on bone crystals.  J Bone Miner Res. 1990;  5(suppl 1) S169-S175
  • 65 Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities.  J Nucl Med. 2005;  46(8) 1356-1367
  • 66 Silva M J, Uthgenannt B A, Rutlin J R, Wohl G R, Lewis J S, Welch M J. In vivo skeletal imaging of 18F-fluoride with positron emission tomography reveals damage- and time-dependent responses to fatigue loading in the rat ulna.  Bone. 2006;  39(2) 229-236
  • 67 Lim R, Fahey F H, Drubach L A, Connolly L P, Treves S T. Early experience with 18F sodium fluoride bone PET in young patients with back pain.  J Pediatr Orthop. 2007;  27(3) 277-282
  • 68 Antoch G, Vogt F M, Freudenberg L S et al.. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology.  JAMA. 2003;  290(24) 3199-3206
  • 69 Metser U, Lerman H, Blank A, Lievshitz G, Bokstein F, Even-Sapir E. Malignant involvement of the spine: assessment by 18F-FDG PET/CT.  J Nucl Med. 2004;  45(2) 279-284
  • 70 Keidar Z, Israel O, Krausz Y. SPECT/CT in tumor imaging: technical aspects and clinical applications.  Semin Nucl Med. 2003;  33(3) 205-218
  • 71 Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith S J. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake.  Radiographics. 2004;  24(5) 1411-1431
  • 72 Kaste S C. Issues specific to implementing PET-CT for pediatric oncology: what we have learned along the way.  Pediatr Radiol. 2004;  34(3) 205-213
  • 73 Roberts E G, Shulkin B L. Technical issues in performing PET studies in pediatric patients.  J Nucl Med Technol. 2004;  32(1) 5-9 , quiz 10-1
  • 74 Cherry S R. The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons)-advances in PET imaging technology.  J Nucl Med. 2006;  47(11) 1735-1745
  • 75 Wiest R, Kassubek J, Schindler K et al.. Comparison of voxel-based 3-D MRI analysis and subtraction ictal SPECT coregistered to MRI in focal epilepsy.  Epilepsy Res. 2005;  65(1-2) 125-133
  • 76 Cascino G D, Buchhalter J R, Mullan B P, So E L. Ictal SPECT in nonlesional extratemporal epilepsy.  Epilepsia. 2004;  45(suppl 4) 32-34

S. Ted TrevesM.D. 

Division of Nuclear Medicine, Department of Radiology, Children's Hospital Boston

300 Longwood Ave., Boston, MA 02115

Email: treves@childrens.harvard.edu