References and Notes
1a
Woodard SS.
Finn MG.
Sharpless KB.
J. Am. Chem. Soc.
1991,
113:
106
1b
Finn MG.
Sharpless KB.
J. Am. Chem. Soc.
1991,
113:
113
1c
McKee BH.
Kalantar TH.
Sharpless KB.
J. Org. Chem.
1991,
56:
6966
1d
Gao Y.
Hanson RM.
Klunder JM.
Ko SY.
Masamune H.
Sharpless KB.
J. Am. Chem. Soc.
1987,
109:
5765
1e
Williams ID.
Pedersen SF.
Sharpless KB.
Lippard SJ.
J. Am. Chem. Soc.
1984,
106:
6430
1f
Martin VS.
Woodard SS.
Katsuki T.
Yasuhiro Y.
Ikeda M.
Sharpless KB.
J. Am. Chem. Soc.
1981,
103:
6237
1g
Katsuki T.
Sharpless KB.
J. Am. Chem. Soc.
1980,
102:
5974
2a
Kelly AR.
Lurain AE.
Walsh PJ.
J. Am. Chem. Soc.
2005,
127:
14668
2b
Karjalainen JK.
Hormi OEO.
Sherrington DC.
Tetrahedron: Asymmetry
1998,
9:
1563
2c
Honda T.
Mizutani H.
Kanai K.
J. Chem. Soc., Perkin Trans. 1
1996,
1729
2d
Petersson H.
Gogoll A.
Backvall J.-E.
J. Org. Chem.
1992,
57:
6025
3a
Lu LD.-L.
Johnson RA.
Finn MG.
Sharpless KB.
J. Org. Chem.
1984,
49:
728
3b
Klunder JM.
Caron M.
Uchiyama M.
Sharpless KB.
J. Org. Chem.
1985,
50:
912
4
Smith MB.
March J.
March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure
5th ed.:
Wiley-Interscience;
New York:
2001.
p.1514-1517
5a
Gogoi P.
Sarmah GK.
Konwar D.
J. Org. Chem.
2004,
69:
5153
5b
Arterbum JB.
Tetrahedron
2001,
57:
9765
5c
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2001,
3:
3041
5d
Liu C.
Han J.
Wang J.
Synlett
2007,
643
5e
Fung W.-H.
Yu W.-Y.
Che C.-M.
J. Org. Chem.
1998,
63:
2873
5f
Krohn K.
Vinke I.
Adam H.
J. Org. Chem.
1996,
61:
1467
5g
Choudary BM.
Durgaprasad A.
Valli VLK.
Tetrahedron Lett.
1990,
31:
5785
5h
Palombi L.
Bonadies F.
Scettri A.
Mincione E.
Tetrahedron Lett.
1990,
31:
5785
5i
Yamawaki K.
Yoshida T.
Nishihara H.
Ishii Y.
Ogawa M.
Synth. Commun.
1986,
16:
537
5j
Masuyama Y.
Takahashi M.
Kurusu Y.
Tetrahedron Lett.
1984,
25:
4417
5k
Kaneda K.
Kawanishi Y.
Jitsukawa K.
Teranishi S.
Tetrahedron Lett.
1983,
24:
5009
5l
Bilgrien C.
Davis S.
Drago RS.
J. Am. Chem. Soc.
1987,
109:
3786
5m
Doyle MP.
Dow RL.
Bagheri V.
Patrie WJ.
J. Org. Chem.
1983,
48:
476
5n
Patil ML.
Maujan SR.
Borate HB.
Uphade BS.
ARKIVOC
2007,
(i):
70
5o
Jain SL.
Sharma VB.
Sain B.
Tetrahedron
2006,
62:
6841
5p
Boudreau J.
Doucette M.
Ajjou AN.
Tetrahedron
2006,
47:
1695
5q
Ferguson G.
Ajjou AN.
Tetrahedron Lett.
2003,
44:
9139
6
Hill JG.
Rossiter BE.
Sharpless KB.
J. Org. Chem.
1983,
48:
3607
7 The general procedure for alcohol oxidation with TiCl4/TBHP or Ti(Oi-Pr)4/TBHP is shown as follows. To alcohol substrate 1 (1 mmol) and 4 Å MS (0.5 g) in CHCl3, CH2Cl2, or CDCl3 (2 mL) at r.t. was added TiCl4 or Ti(Oi-Pr)4 (0.1 mmol, 10% in CHCl3). The mixture was stirred at r.t. for 1 h. Toluene solution of TBHP (1.7 mmol) was added into the mixture, followed by stirring at r.t. or reflux conditions for 1 or 2 d. Low-boiling-point products 2c and 2d were purified by trap-to-trap fractionation and other products were purified by column chromatography with silica gel as stationary phase and hexane-EtOAc as mobile phase. All the products are known and their characterizations are shown as follows.
Compound trans
-3a:
[2d]
1H NMR (300 MHz, CDCl3): δ = 3.19 (m, 1 H), 3.78 (dd, J = 12.8, 3.5 Hz, 1 H), 3.92 (d, J = 2.1 Hz, 1 H), 4.05 (dd, J = 12.8, 2.1 Hz, 1 H), 7.30 (m, 5 H, Ph). 13C NMR (100 MHz, CDCl3): δ = 55.5, 61.2, 62.5, 125.6, 128.2, 128.4, 136.7.
Compound syn-3b:
[9a]
1H NMR (300 MHz, CDCl3): δ = 1.31 (d, 3 H, J = 6.5 Hz), 3.09 (m, 1 H), 3.95 (d, 1 H, J = 2.1 Hz), 4.10 (m, 1 H), 7.32 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 136.9, 128.5, 128.3, 125.7, 65.5, 64.8, 54.6, 18.7.
Compound anti-3b:
[9a]
1H NMR (300 MHz, CDCl3): δ = 1.29 (d, 3 H, J = 6.4 Hz), 3.05 (m, 1 H), 3.86 (d, 1 H, J = 2.0 Hz), 3.85 (m, 1 H), 7.30 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 136.7, 128.4, 128.2, 125.6, 67.1, 66.4, 56.5, 20.0.
Compound 2b:
[9b]
IR (CDCl3): 1678 cm-1; 1H NMR (300 MHz, CDCl3): δ = 2.40 (s, 3 H), 6.73 (d, J = 16.0 Hz, 1 H), 7.41 (m, 3 H), 7.51-7.57 (m, 3 H). 13C NMR (100 MHz, CDCl3) δ = 27.5, 127.2, 128.5, 129.1, 130.5, 134.7, 143.5, 198.2. 2c
[9c]
: IR (CDCl3): 1705 cm-1; 1H NMR (300 MHz, CDCl3): δ = 2.18 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 208.1.
Compound 2d:
[9d]
IR (CDCl3): 1709 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.70 (m, 2 H), 1.83 (m, 4 H), 2.32 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 25.1, 27.2, 42.2, 211.8.
Compound 2e:
[9e]
IR (CDCl3): 1695 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.23 (t, J = 7 Hz, 3 H), 2.98 (q, J = 7.0 Hz, 2 H), 7.40-7.58 (m, 3 H), 7.98 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 8.1, 31.9, 127.7, 128.3, 132.8, 137.0, 200.8.
Compound 2g:
[9f]
IR (CDCl3): 1735, 1665 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.52 (m, 2 H), 7.70 (m, 1 H), 8.21 (m, 2 H), 10.87 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 129.1, 131.3, 132.2, 136.3, 164.0, 185.2.
Compound 2h:
[9g]
IR (CDCl3): 1661 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.46 (m, 4 H), 7.58 (m, 2 H), 7.95 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 129.2, 129.9, 133.2, 135.0, 194.7.
Compound 2i:
[9h]
IR (CDCl3): 1737, 1670 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.44 (t, J = 7.0 Hz, 3 H), 4.43 (q, J = 7.0 Hz, 2 H), 7.47 (m, 2 H), 7.52 (m, 1 H), 8.03 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 14.1, 61.2, 129.3, 131.4, 132.3, 136.5, 163.9, 186.0.
Compound 2j:
[9i]
IR (CDCl3): 1666 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.98 (t, 3 H, J = 7.3 Hz), 1.40 (m, 2 H), 1.60 (m, 2 H), 3.36 (q, J = 7.3 Hz, 2 H), 7.50 (m, 2 H), 7.64 (m, 1 H), 8.35 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 13.7, 20.1, 31.3, 39.2, 128.5, 131.2, 133.4, 134.3, 161.7, 187.9.
Compound 2k:
[9j]
IR (CDCl3): 1710 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.2 (s, 3 H), 2.7 (t, J = 5.5 Hz, 2 H), 3.8 (t, J = 5.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 30.3, 45.6, 61.1, 208.5.
Compound 2l:
[9k]
IR (CDCl3): 1706 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.20 (d, J = 5.8 Hz), 2.18 (s, 3 H), 2.58 (d, J = 5.8 Hz, 2 H), 4.22 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 25.9, 30.6, 51.5, 63.8, 208.9.
8
Dess DB.
Martin JC.
J. Am. Chem. Soc.
1991,
113:
7277
9a
Kawakami T.
Shibata I.
Baba A.
Matsuda H.
J. Org. Chem.
1993,
58:
7608
9b
Murphy JA.
Commeureuc AGJ.
Snaddon TN.
McGuire TM.
Khan TA.
Hisler K.
Dewis ML.
Carling R.
Org. Lett.
2005,
7:
1427
9c
Amyes T.
Richard JP.
J. Am. Chem. Soc.
1992,
114:
10297
9d
Ragagnin G.
Betzemeier B.
Quici S.
Knochel P.
Tetrahedron
2002,
58:
3985
9e
Fujita K.-I.
Tanino N.
Yamaguchi R.
Org. Lett.
2007,
9:
109
9f
Ohwada T.
Shudo K.
J. Org. Chem.
1989,
54:
5227
9g
Okimoto M.
Itoh T.
Chiba T.
J. Org. Chem.
1996,
61:
4835
9h
Tatlock JH.
J. Org. Chem.
1995,
60:
6221
9i
Chen JJ.
Deshpande SV.
Tetrahedron Lett.
2003,
44:
8873
9j
Gogoi P.
Sarmah GK.
Konwar D.
J. Org. Chem.
2004,
69:
5153
9k
Cardillo G.
Orena M.
Porzi G.
Sandri S.
Tomasini C.
J. Org. Chem.
1984,
49:
701