Subscribe to RSS
DOI: 10.1055/s-2008-1066997
TiCl4/tert-Butyl Hydroperoxide: Chemioselective Oxidation of Secondary Alcohols and Suppression of Sharpless Epoxidation
Publication History
Publication Date:
17 March 2008 (online)
Abstract
Replacing Ti(Oi-Pr)4 with TiCl4 under the normal Sharpless epoxiation conditions resulted in a shut down of the epoxidation reaction. Instead, a chemioselective oxidation of secondary alcohols in the presence of primary alcohols occurred.
Key words
epoxidation - selective oxidation - alcohol
-
1a
Woodard SS.Finn MG.Sharpless KB. J. Am. Chem. Soc. 1991, 113: 106 -
1b
Finn MG.Sharpless KB. J. Am. Chem. Soc. 1991, 113: 113 -
1c
McKee BH.Kalantar TH.Sharpless KB. J. Org. Chem. 1991, 56: 6966 -
1d
Gao Y.Hanson RM.Klunder JM.Ko SY.Masamune H.Sharpless KB. J. Am. Chem. Soc. 1987, 109: 5765 -
1e
Williams ID.Pedersen SF.Sharpless KB.Lippard SJ. J. Am. Chem. Soc. 1984, 106: 6430 -
1f
Martin VS.Woodard SS.Katsuki T.Yasuhiro Y.Ikeda M.Sharpless KB. J. Am. Chem. Soc. 1981, 103: 6237 -
1g
Katsuki T.Sharpless KB. J. Am. Chem. Soc. 1980, 102: 5974 -
2a
Kelly AR.Lurain AE.Walsh PJ. J. Am. Chem. Soc. 2005, 127: 14668 -
2b
Karjalainen JK.Hormi OEO.Sherrington DC. Tetrahedron: Asymmetry 1998, 9: 1563 -
2c
Honda T.Mizutani H.Kanai K. J. Chem. Soc., Perkin Trans. 1 1996, 1729 -
2d
Petersson H.Gogoll A.Backvall J.-E. J. Org. Chem. 1992, 57: 6025 -
3a
Lu LD.-L.Johnson RA.Finn MG.Sharpless KB. J. Org. Chem. 1984, 49: 728 -
3b
Klunder JM.Caron M.Uchiyama M.Sharpless KB. J. Org. Chem. 1985, 50: 912 - 4
Smith MB.March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 5th ed.: Wiley-Interscience; New York: 2001. p.1514-1517 -
5a
Gogoi P.Sarmah GK.Konwar D. J. Org. Chem. 2004, 69: 5153 -
5b
Arterbum JB. Tetrahedron 2001, 57: 9765 -
5c
De Luca L.Giacomelli G.Porcheddu A. Org. Lett. 2001, 3: 3041 -
5d
Liu C.Han J.Wang J. Synlett 2007, 643 -
5e
Fung W.-H.Yu W.-Y.Che C.-M. J. Org. Chem. 1998, 63: 2873 -
5f
Krohn K.Vinke I.Adam H. J. Org. Chem. 1996, 61: 1467 -
5g
Choudary BM.Durgaprasad A.Valli VLK. Tetrahedron Lett. 1990, 31: 5785 -
5h
Palombi L.Bonadies F.Scettri A.Mincione E. Tetrahedron Lett. 1990, 31: 5785 -
5i
Yamawaki K.Yoshida T.Nishihara H.Ishii Y.Ogawa M. Synth. Commun. 1986, 16: 537 -
5j
Masuyama Y.Takahashi M.Kurusu Y. Tetrahedron Lett. 1984, 25: 4417 -
5k
Kaneda K.Kawanishi Y.Jitsukawa K.Teranishi S. Tetrahedron Lett. 1983, 24: 5009 -
5l
Bilgrien C.Davis S.Drago RS. J. Am. Chem. Soc. 1987, 109: 3786 -
5m
Doyle MP.Dow RL.Bagheri V.Patrie WJ. J. Org. Chem. 1983, 48: 476 -
5n
Patil ML.Maujan SR.Borate HB.Uphade BS. ARKIVOC 2007, (i): 70 -
5o
Jain SL.Sharma VB.Sain B. Tetrahedron 2006, 62: 6841 -
5p
Boudreau J.Doucette M.Ajjou AN. Tetrahedron 2006, 47: 1695 -
5q
Ferguson G.Ajjou AN. Tetrahedron Lett. 2003, 44: 9139 - 6
Hill JG.Rossiter BE.Sharpless KB. J. Org. Chem. 1983, 48: 3607 - 8
Dess DB.Martin JC. J. Am. Chem. Soc. 1991, 113: 7277 -
9a
Kawakami T.Shibata I.Baba A.Matsuda H. J. Org. Chem. 1993, 58: 7608 -
9b
Murphy JA.Commeureuc AGJ.Snaddon TN.McGuire TM.Khan TA.Hisler K.Dewis ML.Carling R. Org. Lett. 2005, 7: 1427 -
9c
Amyes T.Richard JP. J. Am. Chem. Soc. 1992, 114: 10297 -
9d
Ragagnin G.Betzemeier B.Quici S.Knochel P. Tetrahedron 2002, 58: 3985 -
9e
Fujita K.-I.Tanino N.Yamaguchi R. Org. Lett. 2007, 9: 109 -
9f
Ohwada T.Shudo K. J. Org. Chem. 1989, 54: 5227 -
9g
Okimoto M.Itoh T.Chiba T. J. Org. Chem. 1996, 61: 4835 -
9h
Tatlock JH. J. Org. Chem. 1995, 60: 6221 -
9i
Chen JJ.Deshpande SV. Tetrahedron Lett. 2003, 44: 8873 -
9j
Gogoi P.Sarmah GK.Konwar D. J. Org. Chem. 2004, 69: 5153 -
9k
Cardillo G.Orena M.Porzi G.Sandri S.Tomasini C. J. Org. Chem. 1984, 49: 701
References and Notes
The general procedure for alcohol oxidation with TiCl4/TBHP or Ti(Oi-Pr)4/TBHP is shown as follows. To alcohol substrate 1 (1 mmol) and 4 Å MS (0.5 g) in CHCl3, CH2Cl2, or CDCl3 (2 mL) at r.t. was added TiCl4 or Ti(Oi-Pr)4 (0.1 mmol, 10% in CHCl3). The mixture was stirred at r.t. for 1 h. Toluene solution of TBHP (1.7 mmol) was added into the mixture, followed by stirring at r.t. or reflux conditions for 1 or 2 d. Low-boiling-point products 2c and 2d were purified by trap-to-trap fractionation and other products were purified by column chromatography with silica gel as stationary phase and hexane-EtOAc as mobile phase. All the products are known and their characterizations are shown as follows.
Compound trans
-3a:
[2d]
1H NMR (300 MHz, CDCl3): δ = 3.19 (m, 1 H), 3.78 (dd, J = 12.8, 3.5 Hz, 1 H), 3.92 (d, J = 2.1 Hz, 1 H), 4.05 (dd, J = 12.8, 2.1 Hz, 1 H), 7.30 (m, 5 H, Ph). 13C NMR (100 MHz, CDCl3): δ = 55.5, 61.2, 62.5, 125.6, 128.2, 128.4, 136.7.
Compound syn-3b:
[9a]
1H NMR (300 MHz, CDCl3): δ = 1.31 (d, 3 H, J = 6.5 Hz), 3.09 (m, 1 H), 3.95 (d, 1 H, J = 2.1 Hz), 4.10 (m, 1 H), 7.32 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 136.9, 128.5, 128.3, 125.7, 65.5, 64.8, 54.6, 18.7.
Compound anti-3b:
[9a]
1H NMR (300 MHz, CDCl3): δ = 1.29 (d, 3 H, J = 6.4 Hz), 3.05 (m, 1 H), 3.86 (d, 1 H, J = 2.0 Hz), 3.85 (m, 1 H), 7.30 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 136.7, 128.4, 128.2, 125.6, 67.1, 66.4, 56.5, 20.0.
Compound 2b:
[9b]
IR (CDCl3): 1678 cm-1; 1H NMR (300 MHz, CDCl3): δ = 2.40 (s, 3 H), 6.73 (d, J = 16.0 Hz, 1 H), 7.41 (m, 3 H), 7.51-7.57 (m, 3 H). 13C NMR (100 MHz, CDCl3) δ = 27.5, 127.2, 128.5, 129.1, 130.5, 134.7, 143.5, 198.2. 2c
[9c]
: IR (CDCl3): 1705 cm-1; 1H NMR (300 MHz, CDCl3): δ = 2.18 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 208.1.
Compound 2d:
[9d]
IR (CDCl3): 1709 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.70 (m, 2 H), 1.83 (m, 4 H), 2.32 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 25.1, 27.2, 42.2, 211.8.
Compound 2e:
[9e]
IR (CDCl3): 1695 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.23 (t, J = 7 Hz, 3 H), 2.98 (q, J = 7.0 Hz, 2 H), 7.40-7.58 (m, 3 H), 7.98 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 8.1, 31.9, 127.7, 128.3, 132.8, 137.0, 200.8.
Compound 2g:
[9f]
IR (CDCl3): 1735, 1665 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.52 (m, 2 H), 7.70 (m, 1 H), 8.21 (m, 2 H), 10.87 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 129.1, 131.3, 132.2, 136.3, 164.0, 185.2.
Compound 2h:
[9g]
IR (CDCl3): 1661 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.46 (m, 4 H), 7.58 (m, 2 H), 7.95 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 129.2, 129.9, 133.2, 135.0, 194.7.
Compound 2i:
[9h]
IR (CDCl3): 1737, 1670 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.44 (t, J = 7.0 Hz, 3 H), 4.43 (q, J = 7.0 Hz, 2 H), 7.47 (m, 2 H), 7.52 (m, 1 H), 8.03 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 14.1, 61.2, 129.3, 131.4, 132.3, 136.5, 163.9, 186.0.
Compound 2j:
[9i]
IR (CDCl3): 1666 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.98 (t, 3 H, J = 7.3 Hz), 1.40 (m, 2 H), 1.60 (m, 2 H), 3.36 (q, J = 7.3 Hz, 2 H), 7.50 (m, 2 H), 7.64 (m, 1 H), 8.35 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 13.7, 20.1, 31.3, 39.2, 128.5, 131.2, 133.4, 134.3, 161.7, 187.9.
Compound 2k:
[9j]
IR (CDCl3): 1710 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.2 (s, 3 H), 2.7 (t, J = 5.5 Hz, 2 H), 3.8 (t, J = 5.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 30.3, 45.6, 61.1, 208.5.
Compound 2l:
[9k]
IR (CDCl3): 1706 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.20 (d, J = 5.8 Hz), 2.18 (s, 3 H), 2.58 (d, J = 5.8 Hz, 2 H), 4.22 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 25.9, 30.6, 51.5, 63.8, 208.9.