Subscribe to RSS
DOI: 10.1055/s-2008-1067045
Copper-Mediated 3-N-Arylation of Flavins
Publication History
Publication Date:
29 April 2008 (online)

Abstract
A generally applicable method for the direct 3-N-arylation of flavins using arylboronic acids and copper acetate was developed. The reaction conditions were optimized considering the lability of flavins in basic conditions and thermal heating. Donor- and acceptor-substituted arylboronic acids were used yielding 3-N-arylflavins in moderate to good yields by C(aryl)-N(imide) bond formation. UV and fluorescence measurements indicate an orthogonal orientation of the additional aromatic substituent to the flavin ring system. The arene substituent is not electronically coupled to the flavin π-system in the ground state, but electron-rich arene substituents in 3-N position significantly reduce the flavin emission intensity.
Key words
flavin - N-arylation - boronic acid - isoalloxazin - microwave - copper catalysis
- 1
Mansoorabadi SO.Thiobodeaux CJ.Liu H. J. Org. Chem. 2007, 72: 6329 - 2
Massey V. Biochem. Soc. Trans. 2000, 28: 283 - 3
Chemistry and Biochemistry of Flavoenzymes
Müller F. CRC Press; Boca Raton: 1991. - 4
Fritz BJ.Kasai S.Matsui K. Photochem. Photobiol. 1987, 45: 113 - 5
Bowd A.Byrom P.Hudson JH. Photochem. Photobiol. 1968, 8: 1 - 6
König B.Pelka M.Zieg H.Ritter T.Bouas-Laurent H.Bonneau R.Desvergne J.-P. J. Am. Chem. Soc. 1999, 121: 1681 - 7
Hasford JJ.Rizzo CJ. J. Am. Chem. Soc. 1998, 120: 2251 - 8
Legrand Y.-M.Gray M.Cooke G.Rotello VM. J. Am. Chem. Soc. 2003, 125: 15879 - 9
König B.Pelka M.Reichenbach-Klinke R.Schelter J.Daub J. Eur. J. Org. Chem. 2001, 2297 -
10a
Jordan BJ.Cooke G.Garety JF.Pollier MA.Kryvokhyzha N.Bayir A.Rabani G.Rotello VM. Chem. Commun. 2007, 1248 -
10b
Caroll JB.Jordan BJ.Xu H.Erdogan B.Lee L.Cheng L.Tiernan C.Cooke G.Rotello VM. Org. Lett. 2005, 7: 2551 -
10c
Ray M.Goodmann AJ.Carroll JB.Bardon K.Markey M.Cooke G.Rotello VM. Org. Lett. 2004, 6: 385 -
10d
Butterfield SM.Goodman CM.Rotello VM.Waters ML. Angew. Chem. Int. Ed. 2004, 43: 724; Angew. Chem. 2004, 116, 742 -
10e
Cooke G. Angew. Chem. Int. Ed. 2003, 42: 4860 ; Angew. Chem. 2003, 115, 5008 -
10f
Guo F.Chang BH.Rizzo CJ. Bioorg. Med. Chem. Lett. 2002, 12: 151 -
10g
Behrens C.Ober M.Carell T. Eur. J. Org. Chem. 2002, 3281 -
10h
Butenandt J.Epple R.Wallenborn E.-U.Eker APM.Gramlich V.Carell T. Chem. Eur. J. 2000, 6: 62 -
10i
Rotello VM. Curr. Opin. Chem. Biol. 1999, 3: 747 -
10j
Deans R.Rotello VM. J. Org. Chem. 1997, 62: 4528 -
10k
Breinlinger E.Niemz A.Rotello VM. J. Am. Chem. Soc. 1995, 117: 5379 -
11a
Lindén AA.Johansson M.Hermanns N.Bäckvall J.-E. J. Org. Chem. 2006, 71: 3849 -
11b
Lindén AA.Hermanns N.Ott S.Krüger L.Bäckvall J.-E. Chem. Eur. J. 2005, 11: 112 -
11c
Imada Y.Iida H.Murahashi S.-I.Naota T. Angew. Chem. Int. Ed. 2005, 44: 1704 ; Angew. Chem. 2005, 117, 1732 -
11d
Cibulka R.Vasold R.König B. Chem. Eur. J. 2004, 10: 6223 -
11e
Imada Y.Iida H.Ono S.Murahashi S.-I. J. Am. Chem. Soc. 2003, 125: 2868 -
11f
Moonen MJH.Fraaije MW.Rietjens IMCM.Laane C.van Berkel WJH. Adv. Synth. Catal. 2002, 344: 1023 -
11g
Murahashi S.-I.Ono S.Imada Y. Angew. Chem. Int. Ed. 2002, 41: 2366 ; Angew. Chem. 2002, 114, 2472 -
11h
Murahashi S.-I.Oda T.Masui Y. J. Am. Chem. Soc. 1989, 111: 5002 -
11i
Shinkai S.Ishikawa Y.-I.Manabe O. Chem. Lett. 1982, 809 - 12
Julliard M.Chanon M. Chem. Rev. 1983, 83: 425 - 13
Ritter SC.König B. Chem. Commun. 2006, 4694 - 14
Svoboda J.Schmaderer H.König B. Chem. Eur. J. 2008, 14: 1854 - 16
Dutra JK.Cuello AO.Rotello VM. Tetrahedron Lett. 1997, 38: 4003 - 17
Clerin D.Lacroix A.Fleury J.-P. Tetrahedron Lett. 1976, 2899 - 18
Fleury J.-P. Heterocycles 1980, 14: 1581 - 19
Lacroix A.Schabat D.Clerin D.Fleury J.-P. Bull. Soc. Chim. Fr. 1987, 1065 - 20
Goldner H.Dietz G.Carstens E. Liebigs Ann. Chem. 1966, 694: 142 - 21
Halladay PK.Hunt NH.Butcher GA.Cowden WB. Biochem. Pharm. 1990, 39: 1063 - 22
Youssef MSK.Abbady MS. Heterocycles 1997, 45: 1671 -
23a
Ley SV.Thomas AW. Angew. Chem. Int. Ed. 2003, 42: 5400 ; Angew. Chem. 2003, 115, 5558 -
23b
Chan DMT.Monaco KL.Wand R.-P.Winters MP. Tetrahedron Lett. 1998, 39: 2933 -
23c
Hügel HM.Rix CJ.Fleck K. Synlett 2006, 2290 -
23d
Lan J.-B.Zhang G.-L.Yu X.-Q.You J.-S.Chen L.Yan M.Xie R.-G. Synlett 2004, 1095 -
23e
Lam PYS.Vincent G.Clark CG.Deudon S.Jadhav PK. Tetrahedron Lett. 2001, 42: 3415 -
23f
Chernick ET.Ahrens MJ.Schneidt KA.Wasielewski MR. J. Org. Chem. 2005, 70: 1486 -
23g
Kantam ML.Prakash BV.Reddy CV. J. Mol. Catal. A 2005, 241: 162 -
23h
Dai Q.Ran C.Harvey RG. Tetrahedron 2006, 62: 1764 - 25
McCormick DB. J. Heterocycl. Chem. 1970, 7: 447 - 26
Broutin P.-E.Colobert F. Eur. J. Org. Chem. 2005, 1113
References
Substituents at 10-N have to be inserted in common synthetic protocols for flavin synthesis like the well-known Kuhn synthesis. These routes suffer from the drawback that optimization for different flavins is required.
24Recently, this easily accessible flavin and derivatives were used in our group for catalytic photooxidations.