RSS-Feed abonnieren
DOI: 10.1055/s-2008-1067229
Lithium Aluminum Hydride: A Powerful Reducing Agent
Publikationsverlauf
Publikationsdatum:
12. November 2008 (online)
Biographical Sketches

Introduction
Lithium aluminum hydride (LiAlH4) is a powerful reducing agent used in organic synthesis [¹] and is commonly abbreviated as LAH. It is more powerful than the related reagent sodium borohydride because of the relatively weaker Al-H bond compared to the B-H bond. It reduces a vast number of functional groups. For example, it converts esters, [²a] [b] carboxylic acids [²c] and carbonyl compounds [²d] into the corresponding alcohols; α,β-unsaturated ketones are reduced to allylic alcohols. [²e] When epoxides are reduced using LAH, the reagent attacks the less hindered end of the epoxide, usually producing a secondary or tertiary alcohol. Epoxycyclohexanes are reduced to give axial alcohols preferentially. [²f] Using LAH, amines can be prepared by the reduction of amides, [²g] [h] oximes, [²i] nitriles, nitro compounds or alkyl azides. LAH does not reduce simple alkenes, arenes, or alkynes; but alkynes can be reduced if an alcohol group is nearby. [²j]

Figure 1
Preparation
Treatment of lithium hydride with an ethereal solution of AlCl3 produces the new ether-soluble compound, LAH. [³] Addition of further quantities of AlCl3 yields a mild reducing agent, aluminum hydride (AlH3). [4]

Figure 2
Abstracts
(A) Stereoselective reduction Various syn-1,3-diols were prepared convienently by reduction of β-alkoxy ketones with LiI and LAH (syn/anti selectivity up to >99:1). Here the coordination of LiI gives rise to a syn-selective reducing agent as a consequence of the intervention of a Li+-containing six-membered chelation. [5] | |
(B) Reductive removal of a tosylated hydroxy group/epoxide formation/epoxide opening LAH is also employed in a highly chemo- and regioselective reduction of 2-tosyloxy esters, followed by epoxide formation via an SN2 mechanism and reductive opening of the epoxide. [6] | |
(C) Enantioselective reduction of ketones by modified LAH Highly enantioselective reduction of ketones by chiral-diol modified LAH was successfully demonstrated, with good yields and high ee. [7] | |
(D) Synthesis of amines LAH is a powerful reducing agent, it reduces azide and nitro functionalities into the corresponding amines in a one-pot process. [8] | |
(E) Reduction of amides LAH reduces both cyclic and acyclic amides to the corresponding amines. [9] | |
(F) Epoxide ring opening LAH attacks the epoxide at the less hindered side and produces the alcohols. [¹0] | |
(G) Reduction of lactones LAH reduces lactones to the corresponding diols. [¹¹] | |
(H) Formation of cyclopropane derivatives A homoallylic mesylate, when subjected to LAH, provided the cyclopropane derivative through homoallylic π-participation. [¹²] |
- 1
Brown HC. Org. React. 1951, 6: 469 -
2a
Reetz MT.Drewes MW.Schwickardi R. Org. Synth., Coll. Vol. X 2004, 256 -
2b
Oi R.Sharpless KB. Org. Synth., Coll. Vol. IX 1998, 251 -
2c
Oi R.Sharpless KB. Org. Synth. 1996, 73: 1 -
2d
Koppenhoefer B.Schurig V. Org. Synth., Coll. Vol. VIII 1993, 434 -
2e
Barnier JP.Champion J.Conia JM. Org. Synth., Coll. Vol. VII 1990, 129 -
2f
Elphimoff-Felkin I.Sarda P. Org. Synth., Coll. Vol. VI 1988, 769 -
2g
Rickborn B.Quartucci J. J. Org. Chem. 1984, 29: 3185 -
2h
Seebach D.Kalinowski H.-O.Langer W.Crass G.Wilka E.-M. Org. Synth., Coll. Vol. VII 1990, 41 -
2i
Park CH.Simmons HE. Org. Synth., Coll. Vol. VI 1988, 382 -
2j
Chen YK.Jeon S.-J.Walsh PJ.Nugent WA. Org. Synth. 2005, 82: 87 -
2k
Wender PA.Holt DA.Sieburth SMcN. Org. Synth., Coll. Vol. VII 1990, 456 - 3
Finholt AE.Bond AC.Schlesinger HI. J. Am. Chem. Soc. 1947, 69: 1199 - 4
Lopinti K. Synlett 2005, 2265; Spotlight No. 134 - 5
Ghosh AK.Lei H. J. Org. Chem. 2002, 67: 8783 - 6
Chandrasekhar S.Rambabu C.Prakash SJ. Tetrahedron Lett. 2006, 46: 1213 - 7
Ren Y.Tian X.Sun K.Xu J.Xu X.Lu S. Tetrahedron Lett. 2006, 47: 463 - 8
Chandrasekhar S.Reddy NR.Rao YS. Tetrahedron 2006, 62: 12098 - 9
Kouklovsky C.Hoang CT.Nguyen VH.Alezra V. J. Org. Chem. 2008, 73: 1162 - 10
Chapelon AS.Moraleda D.Rodriguez R.Ollivier C.Santelli M. Tetrahedron 2007, 63: 11511 - 11
Grieco PA.Takigawa T.Schillinger WJ. J. Org. Chem. 1980, 45: 2247 - 12
Pan L.-R.Tokoroyama T. Tetrahedron Lett. 1992, 33: 1473
References
- 1
Brown HC. Org. React. 1951, 6: 469 -
2a
Reetz MT.Drewes MW.Schwickardi R. Org. Synth., Coll. Vol. X 2004, 256 -
2b
Oi R.Sharpless KB. Org. Synth., Coll. Vol. IX 1998, 251 -
2c
Oi R.Sharpless KB. Org. Synth. 1996, 73: 1 -
2d
Koppenhoefer B.Schurig V. Org. Synth., Coll. Vol. VIII 1993, 434 -
2e
Barnier JP.Champion J.Conia JM. Org. Synth., Coll. Vol. VII 1990, 129 -
2f
Elphimoff-Felkin I.Sarda P. Org. Synth., Coll. Vol. VI 1988, 769 -
2g
Rickborn B.Quartucci J. J. Org. Chem. 1984, 29: 3185 -
2h
Seebach D.Kalinowski H.-O.Langer W.Crass G.Wilka E.-M. Org. Synth., Coll. Vol. VII 1990, 41 -
2i
Park CH.Simmons HE. Org. Synth., Coll. Vol. VI 1988, 382 -
2j
Chen YK.Jeon S.-J.Walsh PJ.Nugent WA. Org. Synth. 2005, 82: 87 -
2k
Wender PA.Holt DA.Sieburth SMcN. Org. Synth., Coll. Vol. VII 1990, 456 - 3
Finholt AE.Bond AC.Schlesinger HI. J. Am. Chem. Soc. 1947, 69: 1199 - 4
Lopinti K. Synlett 2005, 2265; Spotlight No. 134 - 5
Ghosh AK.Lei H. J. Org. Chem. 2002, 67: 8783 - 6
Chandrasekhar S.Rambabu C.Prakash SJ. Tetrahedron Lett. 2006, 46: 1213 - 7
Ren Y.Tian X.Sun K.Xu J.Xu X.Lu S. Tetrahedron Lett. 2006, 47: 463 - 8
Chandrasekhar S.Reddy NR.Rao YS. Tetrahedron 2006, 62: 12098 - 9
Kouklovsky C.Hoang CT.Nguyen VH.Alezra V. J. Org. Chem. 2008, 73: 1162 - 10
Chapelon AS.Moraleda D.Rodriguez R.Ollivier C.Santelli M. Tetrahedron 2007, 63: 11511 - 11
Grieco PA.Takigawa T.Schillinger WJ. J. Org. Chem. 1980, 45: 2247 - 12
Pan L.-R.Tokoroyama T. Tetrahedron Lett. 1992, 33: 1473
References

Figure 1

Figure 2







