References and Notes
1 Responsible for X-ray analysis.
2a
Girard P.
Namy JL.
Kagan HB.
Nouv. J. Chim.
1977,
1:
5
2b
Girard P.
Namy JL.
Kagan HB.
J. Am. Chem. Soc.
1980,
102:
2693
2c
Kagan HB.
Namy JL.
Top. Organomet. Chem.
1999,
2:
155
Selected reviews on samarium diiodide promoted chemistry:
3a
Kagan HB.
Namy JL.
Tetrahedron
1986,
42:
6573
3b
Molander GA.
Harris CR.
Chem. Rev.
1996,
96:
307
3c
Molander GA.
Harris CR.
Tetrahedron
1998,
54:
3321
3d
Krief A.
Laval A.-M.
Chem. Rev.
1999,
99:
745
3e
Steel PG.
J. Chem. Soc., Perkin Trans. 1
2001,
2727
3f
Hölemann A.
Synlett
2001,
1497
3g
Berndt M.
Gross S.
Hölemann A.
Reissig H.-U.
Synlett
2004,
422
3h
Edmonds DJ.
Procter DJ.
Chem. Rev.
2004,
104:
3371
3i
Concellón JM.
Rodriguez-Solla H.
Chem. Soc. Rev.
2004,
33:
599
4a
Dinesh CU.
Reissig H.-U.
Angew. Chem. Int. Ed.
1999,
38:
789 ; Angew. Chem. 1999, 111, 874
4b
Nandanan E.
Dinesh CU.
Reissig H.-U.
Tetrahedron
2000,
56:
4267
4c
Berndt M.
Reissig H.-U.
Synlett
2001,
1290
4d
Gross S.
Reissig H.-U.
Synlett
2002,
2027
4e
Gross S.
Reissig H.-U.
Org. Lett.
2003,
5:
4305
4f
Berndt M.
Hlobilová I.
Reissig H.-U.
Org. Lett.
2004,
6:
957
4g
Hölemann A.
Reissig H.-U.
Synlett
2004,
2732
4h
Blot V.
Reissig H.-U.
Synlett
2006,
2763
4i
Blot V.
Reissig H.-U.
Eur. J. Org. Chem.
2006,
4989
4j
Reissig H.-U.
Khan FA.
Czerwonka R.
Dinesh CU.
Shaikh AL.
Zimmer R.
Eur. J. Org. Chem.
2006,
4419
4k
Aulenta F.
Berndt M.
Brüdgam I.
Hartl H.
Sörgel S.
Reissig H.-U.
Chem. Eur. J.
2007,
13:
6047
4l
Wefelscheid UK.
Reissig H.-U.
Adv. Synth. Catal.
2008,
350:
65
4m Aulenta, F.; Wefelscheid, U. K.; Reissig, H.-U. Eur. J. Org. Chem. 2008, in press.
For related phenyl-carbonyl coupling reactions, see:
5a
Schmalz HG.
Siegel S.
Bats JW.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2383 ; Angew. Chem. 1995, 107, 2597
5b
Shiue J.-S.
Lin M.-H.
Fang J.-M.
J. Org. Chem.
1997,
62:
46
5c
Kuo CH.-W.
Fang J.-M.
Synth. Commun.
2001,
31:
877
5d
Schmalz H.-G.
Kiehl O.
Gotov B.
Synlett
2002,
1253
5e
Ohno H.
Maeda S.-i.
Okumura M.
Wakayama R.
Tanaka T.
Chem. Commun.
2002,
316
5f
Ohno H.
Okumura M.
Maeda S.-i.
Iwasaki H.
Wakayama R.
Tanaka T.
J. Org. Chem.
2003,
68:
7722
5g
Ohno H.
Wakayama R.
Maeda S.-i.
Iwasaki H.
Okumura M.
Iwata C.
Mikamiyama H.
Tanaka T.
J. Org. Chem.
2003,
68:
5909
The addition of HMPA as an additive strongly raises the reduction potential of samarium diiodide and is generally required for ketyl coupling reactions. See:
6a
Inanaga J.
Ishikawa M.
Yamaguchi M.
Chem. Lett.
1987,
1485
6b
Prasard E.
Flowers RA.
J. Am. Chem. Soc.
2002,
124:
6895
6c
Flowers RA.
Xu X.
Timmons C.
Li G.
Eur. J. Org. Chem.
2004,
2988
6d
Dahlén A.
Hilmersson G.
Eur. J. Inorg. Chem.
2004,
3393
7
Typical Procedure for a Mannich Reaction, Conversion of 1 into 5
To a solution of aniline (2.3 mL, 25.0 mmol) in DMSO (25 mL) was added cyclopentanone (1, 3.3 mL, 37.5 mmol) and 36% formalin solution (0.85 mL, 30 mmol) along with (S)-proline (860 mg, 7.46 mmol), and the reaction mixture was allowed to stir at r.t. for 4 d. The reaction was quenched with aq NH4Cl solution (20 mL) and extracted twice with EtOAc (100 mL). The combined organic layers were washed with H2O (15 mL) and brine (20 mL). The extract was dried with MgSO4 and concentrated under reduced pressure to obtain the crude product, which was purified by column chromatography on silica gel (hexane-EtOAc, 4:1) to furnish 2.32 g (49%) of Mannich product 5 as a colourless solid.
Analytical Data for (2
R*
)-2-(Anilinomethyl)cyclo-pentanone (5)
Mp 71-73 °C; [α]D -0.2 (c 1, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.66-1.73, 1.79-1.88, 2.02-2.08 (3 m, 1 H each, CH2), 2.14-2.21 (m, 1 H, CH2CO), 2.23-2.29 (m, 1 H, CH2), 2.32-2.38 (m, 1 H, CH2CO), 2.42-2.48 (m, 1 H, CHCO), 3.27 (dd, J = 12.9, 6.5 Hz, 1 H, CH2NH), 3.36 (dd, J = 12.9, 6.9 Hz, 1 H, CH2NH), 4.16 (br s, 1 H, NH), 6.65 (d, J = 7.3 Hz, 2 H, Ar), 6.73 (t, J = 7.3 Hz, 1 H, Ar), 7.18 (t, J = 7.3 Hz, 2 H, Ar). 13C NMR (126 MHz, CDCl3): δ = 20.8, 28.2 (2 t, CH2), 38.5 (t, CH2CO), 44.0 (t, CH2NH), 48.3 (d, CHCO), 113.2 (d, Ar), 117.8 (d, Ar), 129.3 (d, Ar), 148.0 (s, Ar), 220.8 (s, CO). IR (neat): νmax = 3390 (NH), 2970-2875 (=CH, CH), 1720 (CO) cm-1. Anal. Calcd for C12H15NO (189.1): C, 76.16; H, 7.99; N, 7.40. Found: C, 75.87; H, 7.89; N, 7.36. ESI-HRMS: m/z calcd for C12H16NO [M+ + H]: 190.1232; found: 190.1239.
For reviews on organocatalysis, see:
8a
List B.
Synlett
2001,
1675
8b
List B.
Tetrahedron
2002,
58:
5573
8c
Alcaide B.
Almendros P.
Angew. Chem. Int. Ed.
2003,
42:
858
8d List, B. Acc. Chem. Res. 2004, 37, 548
8e For literature in proline-catalyzed Mannich reactions, see: Notz W.
Tanaka F.
Barbas CF.
Acc. Chem. Res.
2004,
37:
580
8f
Ibrahem I.
Casas J.
Córdova A.
Angew. Chem. Int. Ed.
2004,
43:
6528
8g
Ibrahem I.
Zou W.
Casas J.
Sundén H.
Córdova A.
Tetrahedron
2006,
62:
357
8h
Rodríguez B.
Bolm C.
J. Org. Chem.
2006,
71:
2888
8i
Ting A.
Schaus SE.
Eur. J. Org. Chem.
2007,
5797
9
Typical Procedure for SmI
2
-Mediated Cyclizations, Conversion of 9 into 13
Samarium granules (360 mg, 2.40 mmol) and diiodoethane (650 mg, 2.31 mmol) were taken in a flask and kept under an argon atmosphere. The solvent THF (23 mL) was introduced into the flask and allowed to stir at r.t. for 2.5 h. To the deep-blue-colored solution of SmI2 was added HMPA (1.75 mL, 10.0 mmol) and the color of the mixture immediately turns from blue to purple. The mixture was allowed to stir for
0.5 h, and then it was cooled to 0 °C. Compound 9 (231 mg, 1.00 mmol) and t-BuOH (0.24 mL, 2.5 mmol) in THF solution (3 mL) were introduced to the ice-cooled reaction mixture and the stirring was continued for another 1.5 h. The reaction was quenched with aq NH4Cl solution (2 mL) and THF was evaporated under reduced pressure. The mixture was diluted with EtOAc (30 mL) and washed successively with H2O (4 mL), brine (4 mL), and dried with MgSO4. The crude product was purified by column chromatography on silica gel (hexane-EtOAc, 2:8) to obtain product 13 (158 mg, 68%) as a crystalline solid.
Analytical Data for (3a
R*
,9a
S*
,9b
S*
)-5-Acetyl-1,2,3,3a,4,5,7,9a-octahydro-9b
H
-cyclopenta[
c
]quinolin-9b-ol (13)
Mp 141-142 °C. 1H NMR (500 MHz, CDCl3): δ = 1.31-1.36 (m, 1 H, CH2), 1.43-1.48 (m, 1 H, CH2), 1.66-1.76 (m, 2 H, CH2), 1.78-1.86 (m, 1 H), 1.90-1.95 (m, 1 H), 2.02-2.06 (m, 1 H), 2.08 (s, 3 H, CH3CO), 2.09 (s, 1 H, OH), 2.18 (t, J = 13.2 Hz, 1 H, CH2N), 2.82-2.85 (m, 2 H), 2.92-2.95 (m, 1 H), 4.53 (dd, J = 13.2, 6.6 Hz, 1 H, CH2N), 5.60 (s, 1 H), 5.73-5.77 (m, 1 H), 5.93 (dd, J = 10.2, 2.8 Hz, 1 H). 13C NMR (126 MHz, CDCl3): δ = 20.4 (t, CH2), 21.4 (q, CH3CO), 26.7, 27.0, 31.2 (3 t, CH2), 45.4 (d, CH), 45.5 (t, CH2N), 46.8 (d, CH), 84.7 (s, COH), 121.5 (d, CH), 123.7 (d, CH), 124.1 (d, CH), 136.4 (s, C), 168.9 (s, NCO). IR (neat): νmax = 3405 (OH), 2960-2870 (=CH, CH), 1630 (CO) cm-1. Anal. Calcd for C14H19NO2 (233.1): C, 72.07; H, 8.21; N, 6.00. Found: C, 71.50; H, 8.07; N, 6.05. ESI-HRMS: m/z calcd for C14H20NO2 [M+ + H]: 234.1494; found: 234.1491.
10 For a recent example of stereoselective dihydroxylation, see ref. 4l; for a review dealing with directed dihydroxylation reactions, see: Donohoe TJ.
Synlett
2002,
1223
11
X-ray Data
C14H21NO4, M
r = 267.3; T = 173 (2) K; crystal size: 0.07 × 0.25 × 0.25 mm; monoclinic, space group P2(1)/c, a = 11.7907(20), b = 9.0598(15), c = 12.7815(23) Å; Z = 4; D
c = 1.348 mg/m3; F(000) = 576; µ(MoK) = 0.098 mm-1. Θ Range for data collection: 1.79-30.57°, index ranges: -15 ≤ h ≤ 16, -12 ≤ k ≤ 11, -18 ≤ l ≤ 18; reflections collected/unique: 16539/4018 (R
int = 0.0501); final R [I > 2σ(I)]: R1 = 0.0469, wR2 = 0.1208. For the structure and refinement, the programs SHELXS97 and SHELXL97 were used. Atomic coordinates and further crystallographic details have been deposited at the Cambridge Crystallographic Data Centre, deposition number CCDC 676671, and copies of this data can be obtained in application to CCDC, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK [fax:
+44 (1223)336033; email: deposit@ccdc.cam.ac.uk].
12
Wei H.-L.
Yan Z.-Y.
Niu Y.-N.
Li G.-Q.
Liang Y.-M.
J. Org. Chem.
2007,
72:
8600
For the use of DMPU, see:
13a
Curran DP.
Wolin RL.
Synlett
1991,
317
13b For the use of DMI, see: Inokuchi T.
J. Org. Chem.
2005,
70:
1497
14
Procedure for SmI
2
-Mediated Cyclization of 10 to 15 in the Presence of LiBr and DMI
Lithium bromide (610 mg, 7.00 mmol) was dissolved in dry THF (6 mL) and DMI (1.0 mL, 9.0 mmol) was introduced into the solution. The resulting solution was bubbled with argon for 20 min and then added to 0.1 M solution of SmI2 in THF (12 mL) at r.t. and stirred for 30 min. To the resulting purple solution, compound 10 (122 mg, 0.50 mmol, in 2 mL THF) and t-BuOH (0.12 mL, 1.3 mmol) were added at 0 °C. The reaction mixture was stirred for 1.5 h and then quenched with sat. aq NH4Cl solution (2 mL). Tetrahydrofuran was evaporated under reduced pressure, the residue was diluted with EtOAc (20 mL), washed with H2O (2 mL), brine (2 mL), and dried with MgSO4. The crude material was purified by column chromatography on silica gel (hexane-EtOAc, 2:8) to deliver 92 mg (75%) of product 15.
Reviews:
15a
Laschat S.
Dickner T.
Synthesis
2000,
1781
15b
Buffat MGP.
Tetrahedron
2004,
60:
1701
15c
Hsung RP.
Kurdyumov AV.
Sydorenko N.
Eur. J. Org. Chem.
2005,
23