References and Notes
For recent reviews, see:
1a
Guillena G.
Ramon DJ.
Yus M.
Tetrahedron: Asymmetry
2007,
18:
693
1b
Dömling A.
Chem. Rev.
2006,
106:
17
1c
Simon C.
Constantieux T.
Rodriguez J.
Eur. J. Org. Chem.
2004,
4957
1d
Zhu J.
Eur. J. Org. Chem.
2003,
1133
1e
Dömling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168
1f
Ramón DJ.
Yus M.
Angew. Chem. Int. Ed.
2000,
44:
1602
2a
Arend M.
Westermann B.
Risch N.
Angew. Chem. Int. Ed.
1998,
37:
1044
2b
Heaney H. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.953-973
2c
Overman LE.
Ricca DJ. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.1007-1046
3a
Westermann B.
Neuhaus C.
Angew. Chem. Int. Ed.
2005,
44:
4077
3b
Kobayashi S.
Matsubara R.
Nakamura Y.
Kitagawa H.
Sugiura M.
J. Am. Chem. Soc.
2003,
125:
2507
3c
Mitsumori S.
Zhang H.
Cheong PH.-Y.
Houk KN.
Tanaka F.
Barbas CF.
J. Am. Chem. Soc.
2006,
128:
1040
3d
Cordova A.
Barbas CF.
Tetrahedron Lett.
2002,
43:
7749
3e
Dhawan R.
Dghaym RD.
Arndtsen BA.
J. Am. Chem. Soc.
2003,
125:
1474
3f
Nanda KK.
Trotter BW.
Tetrahedron Lett.
2005,
46:
2025
4a
Akiyama T.
Itoh J.
Yokota K.
Fuchibe K.
Angew. Chem. Int. Ed.
2004,
43:
1566
4b
Kobayashi S.
Ishitani H.
Yamashita Y.
Ueno M.
Shimizu H.
Tetrahedron
2001,
57:
861
4c
List B.
J. Am. Chem. Soc.
2000,
122:
9336
4d
Cordova A.
Watanabe S.-i.
Tanaka F.
Notz W.
Barbas CF.
J. Am. Chem. Soc.
2002,
124:
1866
4e
Ollevier T.
Nadeau E.
J. Org. Chem.
2004,
69:
9292
5a
List B.
Pojarliev P.
Biller WT.
Martin HJ.
J. Am. Chem. Soc.
2002,
124:
827
5b
Trost BM.
Terrell LR.
J. Am. Chem. Soc.
2003,
125:
338
5c
Yamaguchi A.
Matsunaga S.
Shibasaki M.
Tetrahedron Lett.
2006,
47:
3985
6a
Desrosier J.-N.
Côté A.
Charette AB.
Tetrahedron
2005,
61:
6186
6b
Côté A.
Charette AB.
J. Org. Chem.
2005,
70:
10864
6c
Porter JR.
Traverse JF.
Hoveyda AH.
Snapper ML.
J. Am. Chem. Soc.
2001,
123:
10409
6d
Akullian LC.
Snapper ML.
Hoveyda AH.
Angew. Chem. Int. Ed.
2003,
42:
4244
For recent examples of similar Mannich-type reactions conducted in Barbier conditions, see:
7a
Aschwanden P.
Stephenson CRJ.
Carreira EM.
Org. Lett.
2006,
8:
2437
7b
Gommermann N.
Knochel P.
Tetrahedron
2005,
61:
11418
7c
Estevam IHS.
Bieber LW.
Tetrahedron Lett.
2003,
44:
667
7d
Wei C.
Li Z.
Li C.-J.
Org. Lett.
2003,
5:
4473
7e
Wei C.
Li C.-J.
J. Am. Chem. Soc.
2003,
125:
9584
7f
Sakaguchi S.
Kubo T.
Ishii Y.
Angew. Chem. Int. Ed.
2001,
40:
2534
7g
Gommermann N.
Koradin C.
Polborn K.
Knochel P.
Angew. Chem. Int. Ed.
2003,
42:
5763
7h
Dube H.
Gommermann N.
Knochel P.
Synthesis
2004,
2015
7i
Bieber LW.
Da Silva MF.
Tetrahedron Lett.
2004,
45:
8281
8
Fan R.
Pu L.
Qin L.
Wen F.
Yao G.
Wu J.
J. Org. Chem.
2007,
72:
3149
9a
Le Gall E.
Troupel M.
Nédélec J.-Y.
Tetrahedron Lett.
2006,
47:
2497
9b
Le Gall E.
Troupel M.
Nedelec J.-Y.
Tetrahedron
2006,
62:
9953
9c
Sengmany S.
Le Gall E.
Le Jean C.
Troupel M.
Nédélec J.-Y.
Tetrahedron
2007,
63:
3672
10 During the course of a previous work dealing with the synthesis of benzylzinc bromide (nonpublished results), we could observe that the reaction is more rapid in MeCN than in THF (>2 times faster). Additionally, it was observed by Gosmini et al. that the solvent is of crucial importance in the cobalt-catalyzed synthesis of arylzinc halides, which cannot be conducted in THF (see ref. 13 for details).
11 This is consistent with previous works demonstrating that organozinc reagents have to be used in sufficient excess (>2 equiv) to react efficiently with aldehydes and amines (see ref. 9 for details).
12 Coupling products were characterized using 1H NMR (400 MHz, CDCl3), 13C NMR (100 MHz, CDCl3), mass spectrometry, and when useful 19F NMR (376 MHz, CDCl3), and IR spectroscopy.
Data for Selected Compounds N
-(1-Phenyloctan-2-yl)-aniline (1)
Colorless oil; yield 2.21 g (79%). ATR-FTIR (neat): 3405, 3025, 2926, 2855, 1600, 1504, 792, 691 cm-1. 1H NMR: δ = 7.41-7.29 (m, 7 H), 6.79 (t, J = 7.3 Hz, 1 H), 6.72 (d, J = 8.0 Hz, 2 H), 3.75-3.73 (m, 1 H), 3.58 (br s, 1 H), 2.97 (dd, J = 13.6,4.6 Hz, 1 H), 2.91 (dd, J = 13.6, 6.4 Hz, 1 H), 1.69-1.40 (m, 10 H), 0.97 (t, J = 7.0 Hz, 3 H). 13C NMR: δ = 147.7, 138.7, 129.7, 129.5, 128.4, 126.3, 117.0, 113.2, 53.7, 40.2, 34.2, 31.9 29.4, 26.2, 22.7, 14.2. MS: m/z (%) = 191 (13), 190 (100), 118 (9), 106 (39), 91 (6), 55 (6). Anal. Calcd for C20H27N: C, 85.35; H, 9.67; N, 4.98. Found: C, 85.68; H, 9.99; N, 4.57.
Allyl-[2-(4-bromo-phenyl)-1-phenyl-ethyl]-amine (5)
Yellow oil; yield 2.05 g (65%). ATR-FTIR (neat): 3324, 3062, 3025, 2919, 2833, 1642, 1487, 1453, 1071, 1011, 915, 803, 756, 699 cm-1. 1H NMR: δ = 7.40-7.26 (m, 7 H), 6.99 (d, J = 7.9 Hz, 2 H), 5.76-5.88 (m, 1 H), 5.09-5.05 (m, 2 H), 3.90 (t, J = 7.0 Hz, 1 H), 3.14 (dd, J = 14.2, 4.7 Hz, 1 H), 3.01 (dd, J = 14.2, 6.5 Hz, 1 H), 2.92 (d, J = 6.8 Hz, 2 H), 1.50 (br s, 1 H). 13C NMR: δ = 143.1, 137.7, 136.7, 131.4, 131.1, 128.4, 127.3, 127.2, 120.2, 115.8, 63.7, 50.0, 44.5. MS: m/z (%) = 179 (5), 178 (6), 165 (5), 147 (11), 146 (100), 129 (8), 104 (7), 91 (35), 90 (8), 89 (5). Anal. Calcd for C17H18BrN: C, 64.57; H, 5.74; N, 4.43. Found: C, 64.30; H, 5.75; N, 4.30.
Ethyl (
N
-Phenylamino)-3-phenylpropionate (7)
Pale yellow solid; yield 1.48 g (55%); mp 71-73 °C. ATR-FTIR (neat, cm-1): 3384, 3025, 2980, 2925, 1712, 1602, 1218, 760, 689. 1H NMR: δ = 7.42 (d, J = 7.5 Hz, 2 H), 7.36 (t, J = 7.3 Hz, 2 H), 7.28 (t, J = 7.0 Hz, 1 H), 7.14 (t, J = 7.6 Hz, 2 H), 6.71 (t, J = 7.3 Hz, 1 H), 6.60 (d, J = 7.8 Hz, 2 H), 4.87 (t, J = 6.6 Hz, 1 H), 4.64 (br s, 1 H), 4.14 (q, J = 7.1 Hz, 2 H), 2.84 (d, J = 6.2 Hz, 2 H), 1.23 (t, J = 7.1 Hz, 3 H). 13C NMR: δ = 171.2, 146.8, 142.2, 129.2, 128.8, 127.5, 126.3, 117.8, 113.7, 60.8, 55.0, 42.9, 14.2. MS: m/z (%) = 269 (20), 183 (14), 182 (100), 180 (9), 104 (17), 77 (6). Anal. Calcd for C17H19NO2: C, 75.81; H, 7.11; N, 5.20. Found: C, 75.65; H, 7.05; N, 5.07.
13 The efficient chemical synthesis of arylzinc reagents has been described in acetonitrile starting from aryl bromides and using a cobalt-catalyzed process, see: Fillon H.
Gosmini C.
Périchon J.
J. Am. Chem. Soc.
2003,
125:
3867
14 α-Bromo esters proved to react with preformed imines in the presence of zinc dust under ultrasound activation to furnish mixtures of β-amino esters and β-lactams, depending on the reaction temperature, see: Ross NA.
MacGregor RR.
Bartsch RA.
Tetrahedron
2004,
60:
2035.
15 This constitutes nonoptimized reaction conditions, which may likely be improved during the course of a separate study.
16a
Buriez O.
Cannes C.
Nédélec J.-Y.
Périchon J.
J. Electroanal. Chem.
2000,
495:
57
16b
Buriez O.
Nédélec J.-Y.
Périchon J.
J. Electroanal. Chem.
2001,
506:
162
16c
Buriez O.
Kazmierski I.
Périchon J.
J. Electroanal. Chem.
2002,
537:
119