Subscribe to RSS
DOI: 10.1055/s-2008-1072649
Ferrier Glycosylation Reaction Catalyzed by Bi(OTf)3-Montmorillonite K-10: Efficient Synthesis of 3,4-Unsaturated Sialic Acid Derivatives
Publication History
Publication Date:
28 March 2008 (online)

Abstract
The reaction of the 4,5-oxazoline derivative of sialic acid with various alcohols was effectively promoted by a catalytic amount of montmorillonite K-10 clay supported Bi(OTf)3 to produce a variety of 3,4-unsaturated sialic acids via the Ferrier glycosylation reaction in moderate yields.
Key words
Ferrier glycosylation reaction - 3,4-unsaturated sialic acid - Bi(OTf)3-montmorillonite K-10 - 4,5-oxazoline derivative of sialic acid - sialidase inhibitor
- 1
Schauer R.Kelm S.Reuter G.Roggentin P.Shaw L. Biochemistry and Role of Sialic Acids, In Biology of the Sialic AcidsRosenberg A. Plenum; New York: 1995. p.7 - 2
Ikeda K.Sato M.Torisawa Y. Curr. Med. Chem. 2004, 3: 339 - 3
von Itzstein M.Wu W.-Y.Kok GB.Pegg MS.Dyason JC.Jin B.Phan TV.Smythe ML.White HF.Oliver SW.Colman PM.Varghese JN.Ryan DM.Woods JM.Bethell RC.Hotham VJ.Cameron JM.Penn CR. Nature (London) 1993, 363: 418 - 4
Murphy BR. Parainfluenza viruses, In Infectious DiseasesGorbach SL.Bartlett JG.Blacklow NR. W. B. Saunders Company; Philadelphia: 1998. p.2125 - 5
Ferrier RJ.Prasad NJ. J. Chem. Soc. C 1969, 570 -
6a
Fraser-Reid B. Acc. Chem. Res. 1985, 18: 347 -
6b
Ferrier RJ. Adv. Carbohydr. Chem. Biochem. 1969, 24: 199 -
7a
Descotes G.Martin J.-C. Carbohydr. Res. 1977, 56: 168 -
7b
Klaffke W.Pudlo P.Springer D.Thiem J. Liebigs Ann. Chem. 1991, 509 -
8a
Grynkiewicz G.Priebe W.Zamojski A. Carbohydr. Res. 1979, 68: 33 -
8b
Bhate P.Horton D.Priebe W. Carbohydr. Res. 1985, 144: 331 - 9
Toshima K.Ishizuka T.Matsuo G.Nakata M. Synlett 1995, 306 - 10
Babu JL.Khare A.Vankar YD. Molecules 2005, 10: 884 - 11
Toshima K.Ishizuka T.Matsuo G.Nakata M. Chem. Lett. , - 12
Lopez JC.Gomez AM.Valverdi S.Fraser-Reid B.
J. Org. Chem. 1995, 60: 3851 - 13
Takhi M.Abdel-Rahman AA.-H.Schmidt RR. Synlett 2001, 427 - 14
Yadav JS.Reddy BVS.Murthy CVSR.Mahesh Kumar G. Synlett 2000, 1450 -
15a
Ikeda K.Torisawa Y.Nishi T.Minamikawa J.-I.Tanaka K.Sato M. Bioorg. Med. Chem. 2003, 11: 3073 -
15b
Yamanoi T.Inoue R.Matsuda S.Katsuraya K.Hamasaki K. Tetrahedron: Asymmetry 2006, 17: 2914 - 16
Schuff BP.Mercer GJ.Nguyen HM. Org. Lett. 2007, 9: 3173 - 17
Miler CA.Wang P.Flashner M. Biochem. Biophys. Res. Commun. 1978, 83: 1479 - 18
Jeanne M.Beatrice B.Bernard C.Christian D.Gerard Q.Alain D. Bull. Soc. Chim. Fr. 1994, 131: 400 -
19a
Ikeda K.Sano K.Ito M.Saito M.Hidari K.Suzuki T.Suzuki Y.Tanaka K. Carbohydr. Res. 2001, 330: 31 -
19b
Suzuki T.Ikeda K.Koyama N.Hosokawa C.Kogure T.Takahashi T.Hidari K.Miyamoto D.Tanaka K.Suzuki Y. Glycoconjugate J. 2001, 18: 331 -
19c
Ikeda K.Kitani S.Sato K.Suzuki T.Hosokawa C.Suzuki Y.Tanaka K.Sato M. Carbohydr. Res. 2004, 339: 1367 -
19d
Ikeda K.Sato K.Kitani S.Suzuki T.Maki N.Suzuki Y.Sato M. Bioorg. Med. Chem. 2006, 14: 7893 -
19e
Sato K.Ikeda K.Suzuki T.Aoyama S.Maki N.Suzuki Y.Sato M. Tetrahedron 2007, 63: 7571 - 20
Torisawa Y.Nishi T.Minamikawa J.-I. Bioorg. Med. Chem. Lett. 2002, 12: 387 - 21
Zbiral E.Brandstetter HH.Christian R.Schauer R. Liebigs Ann. Chem. 1987, 781 - 23
Tokimoto H.Fujimoto Y.Fukase K.Kusumoto S. Tetrahedron: Asymmetry 2005, 16: 441
References and Notes
The α-methyl ketoside of 5-acetamido-3,4,5-trideoxy-d-manno-non-3-en-2-ulosonic acid (4a), and its β-epimer were synthesized from 3-acetamido-4,5,6,7-tetra-O-acetyl-2,3-dideoxy-d-manno-heptose, and methyl 2-methoxy-2-dimethylphosphono acetate in 29% yield over five steps. [18]
24
Typical Procedure
To a stirred mixture of 5 (50 mg, 0.12 mmol) and MeOH (0.1 mL) in MeCN (1.0 mL) was added 40% w/w Bi(OTf)3-montmorillonite K-10 loading of 20% w/w of Bi(OTf)3 (15 mg) at ambient temperature. The mixture was stirred for
20 h at r.t. The reaction suspension was filtered and the filtrate was evaporated under vacuum. The residue was purified by column chromatography on silica gel with CH2Cl2-MeOH (10:1) to give 4a (51 mg, 95%).
Compound 4a-α: 1H NMR (500 MHz, CDCl3): δ = 1.99 (s, 3 H, CH3CONH), 2.05, 2.12, 2.14 (s, each 3 H, CH3CO), 3.34 (s, 3 H, CH3O), 3.78 (s, 3 H, CH3COO), 4.24 (dd, 1 H, J
9a,9b = 12.4 Hz, J
8,9a = 5.9 Hz, H-9a), 4.26 (dd, 1 H, J
5,6 = 9.8 Hz, J
6,7 = 2.1 Hz, H-6), 4.48 (dd, 1 H, J
8,9b = 2.4 Hz, H-9b), 4.52 (dddd, J
5,NH = 9.2 Hz, J
4,5 = 2.6 Hz, J
3,5 = 1.9 Hz, H-5), 5.35 (dd, 1 H, J
7,8 = 6.1 Hz, H-7), 5.44 (ddd, 1 H, H-8), 5.59 (d, 1 H, CH3CONH), 5.78 (dd, 1 H, J
3,4 = 10.1 Hz, H-4), 6.07 (dd, 1 H, H-3). MS-FAB (NBA): m/z = 446 [M + H]+, 468 [M + Na]+. HRMS-FAB: m/z calcd for C19H28NO11: 446.1662; found: 446.1613.
Compound 4a-β: 1H NMR (500 MHz, CDCl3): δ = 1.99 (s, 3 H, CH3CONH), 2.04, 2.10, 2.16 (s, each 3 H, CH3CO), 3.29 (s, 3 H, CH3O), 3.82 (s, 3 H, CH3COO), 4.05 (dd, 1 H, J
5,6 = 10.2 Hz, J
6,7 = 2.3 Hz, H-6), 4.24 (dd, 1 H, J
9a,9b = 12.5 Hz, J
9a,8 = 6.3 Hz, H-9a), 4.63 (dd, 1 H, J
8,9b = 2.3 Hz, H-9b), 4.64 (m, 1 H, H-5), 5.35 (ddd, 1 H, J
7,8 = 5.6 Hz, H-8), 5.40 (dd, 1 H, H-7), 5.51 (d, 1 H, CH3CONH), 5.91 (s, 2 H, H-3 and H-4).