Eine effiziente Therapie der Multiplen Sklerose (MS) erfordert eine schnelle und zuverlässige Diagnose der Erkrankung. Die Magnetresonanztomografie (MRT) ist die maßgebliche paraklinische Untersuchung für die Diagnosestellung. Auch wenn es keinen pathognomischen Befund für MS in der MRT gibt, so lassen sich doch MS-typische Morphologien und Lokalisationen herausarbeiten. Die MRT-Kriterien für die Diagnosestellung werden immer praktikabler und übersichtlicher für die klinische Routine, gleichzeitig konnte sowohl die Spezifität als auch Sensitivität verbessert werden. Neben den revidierten McDonald-Kriterien werden neue Kriterien vorgestellt, in denen eine Kontrastmittelgabe nicht zwingend erforderlich ist. Das Kontrastmittelverhalten gibt Möglichkeiten zur Differenzierung zu nichtentzündlichen Differenzialdiagnosen, zeigt aber auch innerhalb der MS unterschiedliche Charakteristika. Die Kriterien zur Erfüllung der räumlichen und zeitlichen Dissemination wurden vereinfacht. Es werden unterschiedliche Pathomechanismen der Erkrankung postuliert, die erwarten lassen, dass sich die große Gruppe der MS-Patienten in Subgruppen unterteilen lässt. Die beiden Hauptkomponenten der Erkrankung, die bildmorphologisch erkennbar sind, aber auch einen unterschiedlichen klinischen Verlauf nehmen, sind Inflammation und Neurodegeneration. Beide Faktoren sind miteinander verknüpft, haben aber auch eine unabhängige Komponente. Es wird eine Stratifizierung vorgestellt, die von verschiedenen zugrunde liegenden Pathomechanismen für die zwei bildmorphologisch fassbaren Hauptkomponenten ausgeht und so eine Subgruppierung in der MR-Bildgebung ermöglicht. Bisherige und bleibende Fragestellung an die MRT bei MS ist die Bearbeitung der MRT-Kriterien zur Diagnosestellung. Eine neue zukünftige Fragestellung an die MRT wird die Heterogenität bzw. Einteilung in Subtypen sein. Dieser Artikel gibt einen Überblick über beide Fragestellungen.
An efficient therapy of MS requires a quick and reliable diagnosis of the disease. MRI is the most leading paraclinical examination for MS diagnosis. Even though there is no pathognomic finding in MRI, there are MS characteristics with respect to morphology and localization. To exclude other neurological disorders and distinguish between different characteristics within MS, the use of contrast agent is advantageous. Postulated MRI criteria have been increasingly adjusted to the clinical routine and have become clearer, more sensitive, and more specific. Different imaging criteria will be introduced. In addition to the McDonald criteria of 2001 and 2005, new criteria will be presented in which the use of contrast agent is replaced by a second MRI and the dissemination in time and space is simplified. Different pathomechanisms which help to separate MS patients into subgroups are postulated. The diverse pathomechanisms also enable the development of new pharmaceuticals to manipulate the immunologic course in different stages. For varying therapy approaches, it is increasingly important to differentiate the heterogeneous appearance forms into subtypes. The two visible main components of the disorder in MRI are inflammation and neurodegeneration and are responsible for different clinical courses. Both are interdependent and independent of each other. We introduce a stratification which uses both components as a function of their different outcomes to compose subgroups. The previous challenge with respect to MRI was to support the diagnosis of MS via MRI criteria. A future problem will be the heterogeneity and classification of subgroups. This article gives an overview of both problems.
Key words
CNS - inflammation - imaging sequences - MR imaging - Multiple sclerosis
Literatur
1
Bagnato F, Butman JA, Gupta S. et al. .
In vivo detection of cortical plaques by MR imaging in patients with multiple sclerosis.
Am J Neuroradiol.
2006;
27
2161-2167
2
Bagnato F, Jeffries N, Richert ND. et al. .
Evolution of T 1 black holes in patients with multiple sclerosis imaged monthly for 4 years.
Brain.
2003;
126
1782-1789
3
Barkhof F, Walderveen M..
Characterization of tissue damage in multiple sclerosis by nuclear magnetic resonance.
Philos Trans R Soc Lond B Biol Sci.
1999;
354
1675-1686
4
Bieniek M, Altmann DR, Davies GR. et al. .
Cord atrophy separates early primary progressive and relapsing remitting multiple sclerosis.
J Neurol Neurosurg Psychiatry.
2006;
77
1036-1039
5
Bielekova B, Kadom N, Fisher E. et al. .
MRI as a marker for disease heterogeneity in multiple sclerosis.
Neurology.
2005;
65
1071-1076
6
Blevins G, Martin R..
Future immunotherapies in multiple sclerosis.
Semin Neurol.
2003;
23
147-158
7
Bo L, Geurts JJ, Mork SJ. et al. .
Grey matter pathology in multiple sclerosis.
Acta Neurol Scand Suppl.
2006;
183
48-50
8
Bo L, Geurts JJ, Valk P. et al. .
Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis.
Arch Neurol.
2007;
64
76-80
9
Bot JC, Barkhof F, Polman CH. et al. .
Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination.
Neurology.
2004;
62
226-233
10
Bot JC, Blezer EL, Kamphorst W. et al. .
The spinal cord in multiple sclerosis: relationship of high-spatial-resolution quantitative MR imaging findings to histopathologic results.
Radiology.
2004;
233
531-540
11
Bozzali M, Cercignani M, Sormani MP. et al. .
Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging.
Am J Neuroradiol.
2002;
23
985-988
12
Charil A, Filippi M..
Inflammatory demyelination and neurodegeneration in early multiple sclerosis.
J Neurol Sci.
2007;
259
7-15
13
Charil A, Yousry TA, Rovaris M. et al. .
MRI and the diagnosis of multiple sclerosis: expanding the concept of „no better explanation„.
Lancet Neurol.
2006;
5
841-852
14
Dalton CM, Brex PA, Jenkins R. et al. .
Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the early development of multiple sclerosis.
J Neurol Neurosurg Psychiatry.
2002;
73
141-147
15
Filippi M, Dousset V, McFarland HF. et al. .
Role of magnetic resonance imaging in the diagnosis and monitoring of multiple sclerosis: consensus report of the White Matter Study Group.
J Magn Reson Imaging.
2002;
15
499-504
16
Fox NC, Jenkins R, Leary SM. et al. .
Progressive cerebral atrophy in MS: a serial study using registered, volumetric MRI.
Neurology.
2000;
54
807-812
17
Gasperini C, Paolillo A, Rovaris M. et al. .
A comparison of the sensitivity of MRI after double- and triple-dose Gd-DTPA for detecting enhancing lesions in multiple sclerosis.
Magn Reson Imaging.
2000;
18
761-763
18
Gass A, Radu EW, Filippi M. et al. .
MRI follow-up in multiple sclerosis. A guideline for quality assurance.
Fortschr Röntgenstr.
1999;
170
581-586
19
Genain CP, Cannella B, Hauser SL. et al. .
Identification of autoantibodies associated with myelin damage in multiple sclerosis.
Nat Med.
1999;
5
170-175
20
Geurts JJ, Pouwels PJ, Uitdehaag BM. et al. .
Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging.
Radiology.
2006;
236
254-260
21
Gluer CC, Barkmann R, Hahn HK. et al. .
Parametrische biomedizinische Bildgebung - was macht die Qualität quantitativer radiologischer Verfahren aus?.
Fortschr Röntgenstr.
2006;
178
1187-1201
22
Grossman RI, Gonzalez-Scarano F, Atlas SW. et al. .
Multiple sclerosis: gadolinium enhancement in MR imaging.
Radiology.
1986;
161
721-725
23
Hackländer T, Wegner H, Haensch CA..
Die DEVIC-Krankheit: Eine seltene Differenzialdiagnose der Enzephalomyelitis disseminata.
Fortschr Röntgenstr.
2005;
177
1027-1029
24
Hahnel S, Jost G, Knauth M. et al. .
Aktuelle Anwendungen und mögliche zukünftige Applikationen der Magnetisierungstransfer-Technik in der Neuroradiologie.
Fortschr Röntgenstr.
2004;
176
175-182
25
Harting I, Sellner J, Meyding-Lamade U. et al. .
Bildgebung, Diagnosekriterien und Differenzialdiagnose der Multiplen Sklerose.
Fortschr Röntgenstr.
2003;
175
613-622
26
He J, Grossman RI, Ge Y. et al. .
Enhancing patterns in multiple sclerosis: evolution and persistence.
Am J Neuroradiol.
2001;
22
664-669
27
Jasperse B, Minneboo A, Groot V. et al. .
Determinants of cerebral atrophy rate at the time of diagnosis of multiple sclerosis.
Arch Neurol.
2007;
64
190-194
28
Kappos L, Freedman MS, Polman CH. et al. .
Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study.
Lancet.
2007;
370
389-397
29
Kidd D, Barkhof F, McConnell R. et al. .
Cortical lesions in multiple sclerosis.
Brain.
1999;
122
17-26
30
Kuhlmann T, Lingfeld G, Bitsch A. et al. .
Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time.
Brain.
2002;
125
2202-2212
31
Lucchinetti C, Bruck W, Parisi J. et al. .
Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination.
Ann Neurol.
2000;
47
707-717
32
Maravilla KR..
Enhancing our understanding of multiple sclerosis: tracking contrast-enhancing plaques with MR imaging.
Am J Neuroradiol.
2001;
22
601-603
33
Masdeu JC, Quinto C, Olivera C. et al. .
Open-ring imaging sign: highly specific for atypical brain demyelination.
Neurology.
2000;
54
1427-1433
34
Miller DH..
Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis.
NeuroRx.
2004;
1
284-294
35
Miller DH, Filippi M, Fazekas F. et al. .
Role of magnetic resonance imaging within diagnostic criteria for multiple sclerosis.
Ann Neurol.
2004;
56
273-278
36
Nesbit GM, Forbes GS, Scheithauer BW. et al. .
Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy.
Radiology.
1991;
180
467-474
37
Nessler S, Boretius S, Stadelmann C. et al. .
Early MRI changes in a mouse model of multiple sclerosis are predictive of severe inflammatory tissue damage.
Brain.
2007;
130
2186-2198
38
Paty DW, Oger JJ, Kastrukoff LF. et al. .
MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT.
Neurology.
1988;
38
180-185
39
Polman CH, Reingold SC, Edan G. et al. .
Diagnostic criteria for multiple sclerosis: 2005 revisions to the „McDonald Criteria„.
Ann Neurol.
2005;
58
840-846
40
Rashid W, Davies GR, Chard DT. et al. .
Upper cervical cord area in early relapsing-remitting multiple sclerosis: cross-sectional study of factors influencing cord size.
J Magn Reson Imaging.
2006;
23
473-476
41
Reichenbach JR, Haacke EM..
High-resolution BOLD venographic imaging: a window into brain function.
NMR Biomed.
2001;
14
453-467
42
Rieckmann P..
Escalating immunomodulatory therapy of multiple sclerosis: Update (September 2006).
Nervenarzt.
2006;
77
1506-1518
43
Rossi CBA, Lindig TM, Martirosian P. et al. .
Diffusion-Tensor-Bildgebung des Rückenmarks bei 1,5 und 3,0 Tesla.
Fortschr Röntgenstr.
2007;
179
219-224
44
Rovira A, Alonso J, Cucurella G. et al. .
Evolution of multiple sclerosis lesions on serial contrast-enhanced T 1-weighted and magnetization-transfer MR images.
Am J Neuroradiol.
1999;
20
1939-1945
45
Silver NC, Good CD, Sormani MP. et al. .
A modified protocol to improve the detection of enhancing brain and spinal cord lesions in multiple sclerosis.
J Neurol.
2001;
248
215-224
46
Simon JH, Li D, Traboulsee A. et al. .
Standardized MR imaging protocol for multiple sclerosis: Consortium of MS Centers consensus guidelines.
Am J Neuroradiol.
2006;
27
455-461
47
Swanton JK, Fernando K, Dalton CM. et al. .
Modification of MRI criteria for multiple sclerosis in patients with clinically isolated syndromes.
J Neurol Neurosurg Psychiatry.
2006;
77
830-833
48
Swanton JK, Rovira A, Tintore M. et al. .
MRI criteria for multiple sclerosis in patients presenting with clinically isolated syndromes: a multicentre retrospective study.
Lancet Neurol.
2007;
6
677-686
49
Tan IL, Schijndel RA, Pouwels PJ. et al. .
MR venography of multiple sclerosis.
Am J Neuroradiol.
2000;
21
1039-1042
50
Trebst C, Wiendl H, Stangel M..
Konzepte zur Läsionsentstehung bei Multipler Sklerose.
Nervenarzt.
2006;
77
62;
64
51
Walderveen MA, Truyen L, Oosten BW. et al. .
Development of hypointense lesions on T 1-weighted spin-echo magnetic resonance images in multiple sclerosis: relation to inflammatory activity.
Arch Neurol.
1999;
56
345-351
52
Wattjes MP, Harzheim M, Kuhl CK. et al. .
Does high-field MR imaging have an influence on the classification of patients with clinically isolated syndromes according to current diagnostic mr imaging criteria for multiple sclerosis?.
Am J Neuroradiol.
2006;
27
1794-1798
53
Wattjes MP, Lutterbey GG, Harzheim M. et al. .
Higher sensitivity in the detection of inflammatory brain lesions in patients with clinically isolated syndromes suggestive of multiple sclerosis using high field MRI: an intraindividual comparison of 1.5 T with 3.0 T.
Eur Radiol.
2006;
16
2067-2073
Korrespondenz
Dr. Brigitte Holst
Klinik und Poliklinik für Neuroradiologische Diagnostik und Intervention Universitätsklinikum Hamburg-Eppendorf
Martinistraße 52
20246 Hamburg
Email: b.holst@uke.uni-hamburg.de