References and Notes
1a
Lowski W. In
Azides
and Nitrenes
Scriven EFV.
Academic;
Orlando:
1984.
p.205-246
1b
Moore HW.
Goldfish DM. In The Chemistry of Halides, Pseudo-Halides and Azides
Vol.
1:
Patai S.
Rappoport Z.
Wiley;
Chichester:
1983.
p.321-368
1c
Patai S.
The Chemistry of the Azido Group
Wiley
Interscience;
Chichester:
1971.
p.397-405
2a
Jones J.
The Chemical
Synthesis of Peptides
Clarendon Press;
Oxford:
1991.
2b
Meienhofer J.
The Peptides
Vol. 1:
Academic
Press;
New York:
1979.
2c
Vommina V.
Suresh Babu VVS.
Ananda K.
Vasanthakumar G.-R.
J.
Chem. Soc., Perkin Trans. 1
2000,
4328
3a
Frøyen P.
Phosphorus, Sulfur
Silicon Relat. Elem.
1993,
78:
161
3b
Rawal VH.
Zhong HI.
Tetrahedron
Lett.
1994,
35:
4947
3c
Sakai K.
Anselme J.-P.
J. Org. Chem.
1971,
36:
2387
3d
Van Reijendam JW.
Baardman F.
Synthesis
1973,
413
3e
Prakash GKS.
Iyer PS.
Arvanaghi M.
Olah GA.
J.
Org. Chem.
1983,
48:
3358
3f
Pfister JR.
Wymann WE.
Synthesis
1983,
38
3g
Ongeri S.
Aitken D.
Husson H.-P.
Synth.
Commun.
2000,
30:
2593
4
Lee JG.
Kwak KH.
Tetrahedron Lett.
1992,
33:
3165
5
Marinescu L.
Thinggaard J.
Thomsen I.
Bols M.
J. Org. Chem.
2003,
68:
9453
6
Chiyoda T.
Iida K.
Takatori K.
Kajiwara M.
Synlett
2000,
1427
7
El-Faham A.
Abdul-Ghani M.
Org. Prep. Proced. Int.
2003,
35:
369
8
Lago JM.
Arrieta A.
Palomo C.
Synth.
Commun.
1983,
13:
289
9
Arrieta A.
Aizpurua JM.
Palomo C.
Tetrahedron
Lett.
1984,
25:
3365
10a
Gumaste VK.
Bhawal BM.
Deshmukh ARAS.
Tetrahedron
Lett.
2002,
43:
1345
10b
Bao W.
Wang Q.
J. Chem. Res., Synop.
2003,
700
11
Bandgar BP.
Pandit SS.
Tetrahedron Lett.
2002,
43:
3413
12
Frøyen P.
Phosphorus,
Sulfur Silicon Relat. Elem.
1994,
89:
57
13
Jang DO.
Park DJ.
Kim J.
Tetrahedron
Lett.
1999,
40:
5323
14
Typical Experimental
Procedure: To a mixture of benzoic acid (122 mg, 1.0 mmol),
triphenylphosphine (525 mg, 2.0 mmol) and sodium azide (78 mg, 1.2
mmol) in anhyd acetone (2 mL) under argon was added trichloroacetonitrile (0.2
mL, 2.0 mmol) dropwise at r.t. The reactants were allowed to react
for 30 min. After concentration of the reaction mixture by a rotary
evaporator, the residue was then diluted with CH2Cl2 (4
mL), and washed with H2O (2 mL). The organic layer was
dried over anhyd MgSO4. After filtration, the solvent
was removed and the residue was purified by column chromatography
on silica gel (hexanes-EtOAc, 2:1) to give benzoyl azide
(141 mg, 96%).
15
N-Fmoc-l-Ala-N3: mp 162-164 ˚C
(lit.¹7 mp 162 ˚C); [α]D
²5 16.3
(c = 1, CHCl3) (lit.¹7 [α]D -16). ¹H
NMR (300 MHz, CDCl3): δ = 1.41 (d, J = 2.2 Hz, 3 H), 3.86 (m, 1
H), 4.22 (t, J = 2.3 Hz, 1 H),
4.41 (d, J = 2.3 Hz, 2 H), 5.28
(s, 1 H), 7.22-7.84 (m, 8 H).
16
N-Fmoc-Ala-Leu-OMe:
mp 124-126 ˚C (lit.²c mp 123-126 ˚C); [α]D
²5 -28.1
(c = 1, CHCl3) (lit.²c [α]D -25.2). ¹H
NMR (300 MHz, CDCl3): δ = 0.92 (s,
6 H), 1.42 (d, J = 2.2 Hz, 3 H),
1.55 (m, 1 H), 1.64 (m, 2 H), 3.71 (s, 3 H), 4.23 (t, J = 2.4 Hz, 1 H), 4.30 (t, J = 2.2 Hz, 1 H), 4.40 (d, J = 2.4 Hz, 2 H), 4.61 (q, J = 1.6 Hz, 1 H), 5.42 (s, 1
H), 6.37 (s, 1 H), 7.25-7.82 (m, 8 H).
17
Cho DH.
Jang DO.
Tetrahedron Lett.
2004,
45:
2285