References and Notes
1
Castro AM.
Chem.
Rev.
2004,
104:
2939
For reviews of asymmetric [3,3]-sigmatropic rearrangements,
see:
2a
Enders D.
Knopp M.
Schiffers R.
Tetrahedron:
Asymmetry
1996,
7:
1847
2b
Ito H.
Taguchi T.
Chem. Soc. Rev.
1999,
29:
43
2c
Nubbemeyer U.
Synthesis
2003,
961
3a
Suzuki T.
Sato E.
Kamada S.
Tada H.
Unno K.
Kametani T.
J. Chem. Soc., Perkin Trans.
1
1986,
387
3b
Takano S.
Kurotaki A.
Takahashi M.
Ogasawara K.
J. Chem. Soc., Perkin Trans.
1
1987,
91
3c
Nemoto H.
Satoh A.
Ando M.
Fukumoto K.
J. Chem. Soc., Perkin Trans. 1
1991,
1309
4
Hatakeyama S.
Saijo K.
Takano S.
Tetrahedron
Lett.
1985,
26:
865
5
Tadano K.
Minami M.
Ogawa S.
J.
Org. Chem.
1990,
55:
2108
6
Cha JK.
Lewis SC.
Tetrahedron Lett.
1984,
25:
5263
7
Désert S.
Metzner P.
Tetrahedron
1992,
48:
10327
8
Mulzer J.
Shanyoor M.
Tetrahedron Lett.
1993,
34:
6545
High levels of asymmetric induction
have also been observed in zwitterionic Claisen-type rearrangements involving
either sulfide-ketene adducts or deprotonated N-acylammonium
salts. See:
9a
Nubbemeyer U.
Öhrlein R.
Gonda J.
Ernst B.
Bellu D.
Angew.
Chem., Int. Ed. Engl.
1991,
30:
1465
9b
Nubbemeyer U.
J.
Org. Chem.
1996,
61:
3677
10a
Takano S.
Hirama M.
Ogasawara K.
Chem. Lett.
1982,
11:
529
10b
Tamaru Y.
Furukawa Y.
Mizutani M.
Kitao O.
Yoshida Z.
J.
Org. Chem.
1983,
48:
3631
10c
Mortimer AJP.
Pang PS.
Aliev AE.
Tocher DA.
Porter MJ.
Org.
Biomol. Chem.
2008,
6:
DOI:
10.1039/b806031b
11
Marshall JA.
Trometer JD.
Cleary DG.
Tetrahedron
1999,
45:
391
12
Borcherding DR.
Narayanan S.
Hasobe M.
McKee JG.
Keller BT.
Borchardt RT.
J.
Med. Chem.
1988,
31:
1729
13
Hoffmann RW.
Chem.
Rev.
1989,
89:
1841
14
McKenna CE.
Khawli LA.
J. Org. Chem.
1986,
51:
5467
15 A mixture of thioamide 15 (116
mg, 0.61 mmol), bromide 14b (200 mg, 0.67
mmol), MeCN (1 mL) and 4 Å molecular sieves (250 mg) was
stirred under an argon atmosphere for 4 d. Further MeCN (2 mL) was
added and the mixture warmed to 35 ˚C. Et3N
(94 µL, 0.67 mmol) was added and the resulting solution
was stirred at 35 ˚C for 7 h. The mixture was cooled to
r.t., diluted with CH2Cl2 (30 mL) and washed with
2% citric acid (2 × 50 mL). The combined aqueous washings
were extracted with CH2Cl2 (50 mL), and the combined
organic layers were dried (MgSO4) and concentrated in
vacuo to give the crude product (190 mg, 76%). Flash chromatography
(SiO2; EtOAc-PE, 1:19) afforded 18b (130
mg, 52%) as a pale yellow oil; Rf
0.43 (EtOAc-PE,
15:85); [α]D
²0 +31.5
(c = 1.08, CHCl3).
IR (CHCl3 cast): 2983, 2934, 2874 (CH), 1625 (C=C),
1499, 1452, 1316 (C=S) cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 1.28 (3 H,
s) and 1.34 [3 H, s, C(CH3)2],
2.30-2.40 (2 H, m, NCH2CH
2),
3.21 (1 H, br t, J = 8.5 Hz,
CHC=S), 3.51 (1 H, ddd, J = 11.0,
8.5, 7.0 Hz) and 3.62 (1 H, ddd, J = 11.0,
8.8, 5.2 Hz, NCH
2CH2),
3.76 (1 H, dd, J = 8.5, 6.8
Hz, CHHO), 3.88 [1 H, dd, J = 10.1, 1.8 Hz, H2C=C(Br)CH], 4.10 (1 H, dd, J = 8.5, 6.1 Hz, CHHO), 4.44 (1 H, ddd, J = 10.1,
6.8, 6.1 Hz, CHO), 4.79 (1 H, d, J = 14.6
Hz) and 5.16 (1 H, d, J = 14.6
Hz, PhCH
2), 5.51 (1 H, dd, J = 1.8, 0.5 Hz) and 5.90 (1 H,
dd, J = 1.8, 0.4 Hz, C=CH2),
7.26-7.32 (5 H, m, ArH). ¹³C NMR
(125 MHz, CDCl3): δ = 22.2 (NCH2
CH2), 26.0 and 26.5 [C(CH3)2],
51.9 (PhCH2), 52.8 (NCH2CH2), 55.2 [H2C=C(Br)CH], 56.9 (CHC=S),
68.7 (CH2O), 74.7 (CHO), 110.1 [C(CH3)2],
119.8 (C=CH2), 127.9,
128.2 and 128.7 (aromatic CH), 133.5 (C=CH2),
135.3 (aromatic C), 203 (C=S). MS (CI+,
CH4): m/z = 410 (16), 412 (14) [MH+],
352 (46), 354 (50) [MH+ - Me2CO],
338 (63), 330 (100) [MH+ - HBr].
HRMS: m/z [MH+] calcd
for C19H25
79BrNO2S: 410.0789;
found: 410.0799.
16
X-ray data:
C16H21NO2S, M = 291.40; T = 150(2) K; orthorhombic, P212121, a = 8.6108(10), b = 13.2760(16), c = 13.3204(16) Å; Z = 4; D
c = 1.271
g/cm³; F(000) = 624; µ(Μο-Κα) = 0.214
mm-¹; 12892 reflection, 3586 independent
(R
int = 0.0336) measured
on a Bruker SMART APEX CCD diffractometer using Μο-Κα radiation; R1 = 0.0350, wR2 = 0.0834
(3346 reflections F
² >2σ F
²), R1 = 0.0382, wR2 = 0.0855
(all data). Atomic coordinates and further crystallographic details
have been deposited at the Cambridge Crystallographic Data Centre,
deposition number CCDC 687669. Copies of these data can be obtained by
applying to CCDC, University Chemical Laboratory, Lensfield Road,
Cambridge CB2 1EW, U.K.; fax: +44 (1223)336033; email:
deposit@ccdc.cam.ac.uk.
17
Zhong YL.
Shing TKM.
J. Org. Chem.
1997,
62:
2622
18 Data for 21: Rf
0.23 (EtOAc-PE,
30:70); [α]D
²0 -73.2
(c = 0.40, CHCl3).
IR (CHCl3 cast): 3399 (br, OH), 2923, 2875 (CH), 1635
(C=C), 1508, 1453, 1310 (C=S) cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 1.87 (1 H,
ddt, J = 12.8, 8.8, 6.1 Hz) and
2.17 (1 H, dtd, J = 12.8, 9.1,
5.9 Hz, NCH2CH
2),
2.62 (1 H, br s, OH), 3.02 (1
H, m, H2C=CHCH), 3.33 (1 H, ddd, J = 9.1, 6.3, 3.6 Hz, CHC=S),
3.44 (1 H, ddd, J = 11.2, 9.1, 6.1
Hz) and 3.49 (1 H, ddd, J = 11.2,
8.8, 5.9 Hz, NCH
2CH2), 3.71
(1 H, dd, J = 11.5, 6.5 Hz)
and 3.84 (1 H, dd, J = 11.5, 9.1
Hz, CH
2OH), 4.90 (1 H, d, J = 14.3 Hz) and 5.05 (1 H,
d, J = 14.3 Hz, PhCH
2), 5.10 (1 H, dd, J = 10.5, 1.8 Hz) and 5.20 (1
H, dd, J = 17.3,
1.8 Hz, CH=CH
2), 5.64 (1
H, ddd, J = 17.3, 10.5, 8.8
Hz, CH=CH2), 7.28-7.34
(5 H, m, ArH). ¹³C NMR (125 MHz, CDCl3): δ = 23.1
(NCH2
CH2), 49.3 (H2C=CHCH), 51.8 (PhCH2),
52.8 (NCH2CH2),
55.1 (CHC=S), 63.0 (CH2OH),
118.4 (CH=CH2), 128.1,
128.3 and 128.8 (aromatic CH), 134.9 (aromatic C), 135.6 (CH=CH2), 202.7 (C=S). MS (CI+, CH4): m/z = 290 (22) [M + C2H5]+,
262 (100) [MH+], 244 (32) [MH+ - H2O],
191 (25). HRMS: m/z [M + H+] calcd
for C15H20NOS: 262.1266; found: 262.1260.
For 22: [α]D
²0 +71.4
(c = 0.28, CHCl3).
19
Rossi R.
Bellina F.
Raugei E.
Synlett
2000,
1749
20
Scott WJ.
Stille JK.
J. Am. Chem. Soc.
1986,
108:
3033
21a
Chérest M.
Felkin H.
Prudent N.
Tetrahedron Lett.
1968,
2199
21b
Anh NT.
Eisenstein O.
Tetrahedron
Lett.
1976,
155
21c
Anh NT.
Top. Curr. Chem.
1980,
88:
145
22
Kahn SD.
Hehre WJ.
J. Org. Chem.
1988,
53:
301
23 An alternative explanation is that
both products arise from transition states in which the methine
C-H bond of the acetonide eclipses the double bond, but
the selectivity for reaction anti to
the allylic C-O bond is imperfect. Such an explanation,
however, does not account for the difference between the brominated
and nonbrominated substrates.