Subscribe to RSS
DOI: 10.1055/s-2008-1078051
Aryl Norbornanes and Analogues via Palladium-Catalyzed Hydroarylation with Arenediazonium Tetrafluoroborates
Publication History
Publication Date:
12 September 2008 (online)
Abstract
The palladium-catalyzed hydroarylation of arenediazonium tetrafluoroborates with norbornene derivatives and analogues in the presence of Pd(OAc)2 and i-Pr3SiH in THF affords hydroarylation products containing the added aryl unit in the exo position in good to high yields. The reaction tolerates a variety of useful functional groups and can be performed as a one-pot procedure generating the arenediazonium salt in situ.
Key words
norbornene - palladium - hydroarylation - arenediazonium salts
- 1 For an excellent recent review on
the palladium-chemistry of arenediazonium salts, see:
Roglans A.Pla-Quintana A.Moreno-Mañas M. Chem. Rev. 2006, 106: 4622 - For some recent selected references, see:
-
2a
Ma Y.Song C.Chai Q.Ma C.Andrus MB. Synthesis 2003, 2886 -
2b
Wang C.Tan L.-S.He J.-P.Hu H.-W.Xu J.-H. Synth. Commun. 2003, 33: 773 -
2c
Masllorens J.Moreno-Manãs M.Pla-Quintana A.Roglans A. Org. Lett. 2003, 5: 1559 -
2d
Schmidt B. Chem. Commun. 2003, 1656 -
2e
Nelson ML.Ismail MY.McIntyre L.Bhatia B.Viski P.Hawkins P.Rennie G.Andorsky D.Messersmith D.Stapleton K.Dumornay J.Sheahan P.Verma AK.Warchol T.Levy SB. J. Org. Chem. 2003, 68: 5838 -
2f
Dai M.Liang B.Wang C.Chen J.Yang Z. Org. Lett. 2004, 6: 221 -
2g
Kabalka GW.Dong G.Venkataiah B. Tetrahedron Lett. 2004, 45: 2775 -
2h
Xu L.-H.Zhang Y.-Y.Wang X.-L.Chou J.-Y. Dyes Pigm. 2004, 62: 283 -
2i
Sabino AA.Machado AHL.Correia CRD.Eberlin MN. Angew. Chem. Int. Ed. 2004, 43: 2514 -
2j
Sabino AA.Machado AHL.Correia CRD.Eberlin MN. Angew. Chem. Int. Ed. 2004, 43: 2514 ; corrigendum: Angew. Chem. Int. Ed. 2004, 43, 4389 -
2k
Masllorens J.Bouquillon S.Roglans A.Hénin F.Muzart J. J. Organomet. Chem. 2005, 690: 3822 -
2l
Garcia ALL.Carpes MJS.Montes de Oca ACB.dos Santos MAG.Santana CC.Correia CRD. J. Org. Chem. 2005, 70: 1050 -
2m
Artuso E.Barbero M.Degani I.Dughera S.Fochi R. Tetrahedron 2006, 62: 3146 -
2n
Pastre JC.Correia CRD. Org. Lett. 2006, 8: 1657 -
2o
Perez R.Veronese D.Coelho F.Antunes OAC. Tetrahedron Lett. 2006, 47: 1325 - For some recent references, see:
-
3a
Peyroux E.Berthiol F.Doucet H.Santelli M. Eur. J. Org. Chem. 2004, 1075 -
3b
Jo J.Chi C.Höger S.Wegner G.Yoon DY. Chem. Eur. J. 2004, 10: 2681 -
3c See also:
Gallo V.Mastrorilli P.Nobile CF.Paolillo R.Taccardi N. Eur. J. Inorg. Chem. 2005, 582 -
3d
Darses S.Genet JP. Eur. J. Org. Chem. 2003, 4313 -
4a
Kikukawa K.Kono K.Wada F.Matsuda T. Chem. Lett. 1982, 35 -
4b
Kikukawa K.Kono K.Wada F.Matsuda T. J. Org. Chem. 1983, 48: 1333 -
4c
Kikukawa K.Idemoto T.Katayama A.Kono K.Wada F.Matsuda T. J. Chem. Soc., Perkin Trans. 1 1987, 1511 -
4d
Dughera S. Synthesis 2006, 1117 -
5a
Kikukawa K.Kono K.Nagira K.Wada F.Matsuda T. Tetrahedron Lett. 1980, 21: 2877 -
5b
Nagira K.Kikukawa K.Wada F.Matsuda T. J. Org. Chem. 1980, 45: 2365 -
5c
Kikukawa K.Kono K.Nagira K.Wada F.Matsuda T. J. Org. Chem. 1981, 46: 4413 -
5d
Sengupta S.Sadhukhan SK.Bhattacharyya S.Guha J. J. Chem. Soc., Perkin Trans. 1 1998, 407 -
5e
Kikukawa K.Totoki T.Wada F.Matsuda T. J. Organomet. Chem. 1984, 270: 283 -
5f
Siegrist U.Rapold T.Blaser H.-U. Org. Process Res. Dev. 2003, 7: 429 - 6
Pelzer G.Keim W. J. Mol. Catal. A: Chem. 1999, 139: 235 -
7a
Willis DM.Strongin RM. Tetrahedron Lett. 2000, 41: 8683 -
7b
Ma Y.Song C.Jiang W.Xue G.Cannon JF.Wang X.Andrus MB. Org. Lett. 2003, 5: 4635 - 8
Cacchi S.Fabrizi G.Goggiamani A.Persiani D. Org. Lett. 2008, 10: 1597 -
9a
Arcadi A.Marinelli F.Bernocchi E.Cacchi S.Ortar G. J. Organomet. Chem. 1989, 368: 249 -
9b
Larock RC.Johnson PL. Chem. Commun. 1989, 1368 - 10
Mayo P.Tam W. Tetrahedron 2002, 58: 9527 - 11
Wållberg A.Magnusson G. Tetrahedron 2000, 56: 8533 -
12a
Clayton SC.Regan AC. Tetrahedron Lett. 1993, 34: 7493 -
12b
Bai D.Xu R.Chu G.Zhu X. J. Org. Chem. 1996, 61: 4600 -
13a
Kasyan A.Wagner C.Maier ME. Tetrahedron 1998, 54: 8047 -
13b
Carroll FI.Brieaddy LE.Navarro HA.Damaj MI.Martin BR. J. Med. Chem. 2005, 48: 7491 -
14a
Brunner H.Kramler K. Synthesis 1991, 1121 -
14b
Sakuraba S.Awano K.Achiwa K. Synlett 1994, 291 -
14c
Sakuraba S.Okada T.Morimoto T.Achiwa K. Chem. Pharm. Bull. 1995, 43: 927 -
14d
Wu X.-Y.Xu H.-D.Zhoua Q.-L.Chan ASC. Tetrahedron: Asymmetry 2000, 11: 1255 -
14e
Wu X.-Y.Xu H.-D.Tang F.-Y.Zhou Q.-L. Tetrahedron: Asymmetry 2001, 12: 2565 -
15a
Kikukawa K.Nagira K.Wada F.Matsuda T. Tetrahedron 1981, 37: 31 -
15b
Sengupta S.Bhattacharyya S. J. Chem. Soc., Perkin Trans. 1 1993, 1943 - 19
Doyle MP.Bryker WJ. J. Org. Chem. 1979, 44: 1572 -
21a
Hatanaka Y.Hiyama T. Tetrahedron Lett. 1990, 31: 2719 -
21b
Hatanaka Y.Hiyama T. J. Am. Chem. Soc. 1990, 112: 7783
References and Notes
When 1a was subjected to the reaction conditions reported in Table [¹] (entry 5) omitting Pd(OAc)2 no reduction product 4 was formed suggesting that the reduction of 1a to 4 proceeds through a palladium-catalyzed process.
17
Typical Procedure
for the Palladium-Catalyzed Hydro-arylation of Norbornene Derivatives
with Arenediazo-nium Tetrafluoroborates - Hydroarylation
of 1a with 2a (Table 2, entry 1)
To a stirred solution
of 1a (105.1 mg, 0.50 mmol) and Pd(OAc)2 (5.6
mg, 0.025 mmol) in anhyd THF (4.0 mL), 2a (233.8
mg, 1.0 mmol) was added at r.t. under argon. The reaction mixture
was cooled in an ice bath. Then, i-Pr3SiH (205 µL,
1.0 mmol) was added and the reaction mixture was stirred at 15 ˚C
for 40 min under argon (the reactor was protected from light with
aluminum film). After this time, the mixture was diluted with EtOAc,
washed with H2O, dried over Na2SO4,
and concentrated under reduced pressure. The residue was purified
by chromatography on silica gel [n-hexane-EtOAc,
90:10 (v/v)] to afford 120.8 mg (73% yield)
of 3a, mp 64-66 ˚C.
IR (KBr): 2968, 1735, 1198 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.89 (d, J = 8.2 Hz, 2
H), 7.38 (d, J = 8.2
Hz, 2 H), 3.70 (s, 6 H), 3.64 (t, J = 7.4 Hz,
1 H), 3.19 (ddd, J
1 = 11.7
Hz, J
2 = 4.5
Hz, J
3 = 1.4
Hz, 1 H), 2.99 (dd, J
1 = 11.8
Hz, J
2 = 3.7
Hz, 1 H), 2.75-270 (m, 1 H), 2.73-2.58 (m, 1 H),
2.13 (ddd, J
1 = 11.1
Hz, J
2 = 8.8
Hz, J
3 = 3.7
Hz, 1 H), 1.74-1.65 (m, 2 H), 1.42-1.26 (m, 1
H). ¹³C NMR (100.6 MHz, CDCl3): δ = 197.9,
172.9, 172.6, 151.9, 134.9, 128.5, 127.5, 51.7, 51.5, 47.7, 46.2,
45.9, 41.6, 40.2, 37.5, 33.2, 26.6. MS: m/z (relative
intensity) = 330 (12) [M+],
298 (10), 270 (57), 185 (232), 43 (100).
NOESY experiments on 3a: for selected H-H interactions, see Figure [²] .
20
Palladium-Catalyzed
Hydroarylation of 1a with 2a Generated In Situ
A solution
of BF3˙OEt2 (140 µL, 1.1
mmol) in anhyd THF (1 mL) was cooled at -15 ˚C
and p-aminoacetophenone (135.1 mg, 1
mmol) was added. Then, tert-butyl nitrite
(160 µL, 1.3 mmol) in 1 mL of the same solvent was added
dropwise to the rapidly stirred reaction solution over a period
of 10 min. Following complete addition, the temperature of the solution was
maintained at -15 ˚C for 10 min and subsequently allowed
to warm to 5 ˚C in an ice-water bath over a period of
20 min. Then, the reaction mixture was warmed to r.t. and stirred
at the same temperature till the starting p-amino-acetophenone
was converted into p-acetylbenzenediazo-nium
tetrafluoroborate. The reaction mixture was cooled in an ice bath
and 1a (105.1 mg, 0.50 mmol), Pd(OAc)2 (5.6 mg,
0.025 mmol), i-Pr3SiH (205 µL,
1.0 mmol), and of anhyd THF (2 mL) were added. The reaction mixture
was allowed to warm to 20 ˚C and stirred at that
temperature for 6 h under argon (the reactor was protected from
light with aluminum film). After this time, the mixture was diluted with
EtOAc, washed with H2O, dried over Na2SO4,
and concentrated under reduced pressure. The residue was purified
by chromatography on silica gel [n-hexane-EtOAc, 90:10
(v/v)] to afford 106.3 mg (64% yield)
of 3a.