Abstract
[1,2]-Wittig rearrangement of (benzyloxy)acetamides can
lead to substituted α-hydroxyamides in good yields and
good diastereoselectivity.
Key words
[1,2]-Wittig rearrangement - amides - phase-transfer catalysis
References and Notes
1
Wittig G.
Löhmann L.
Liebigs Ann. Chem.
1942,
550:
260
2a
Marshall JA. In
Comprehensive Organic Synthesis
Vol.
3:
Trost BM.
Fleming I.
Pergamon;
London:
1991.
p.975
2b
Tomooka K.
Yamamoto H.
Nakai T.
Liebigs
Ann./Recl.
1997,
1275
3
Schöllkopf U.
Angew.
Chem., Int. Ed. Engl.
1970,
9:
763
4a
Maleczka RE.
Geng F.
J. Am. Chem. Soc.
1998,
120:
8551
4b
Tomooka K.
Igarashi T.
Nakai T.
Tetrahedron
1994,
50:
5927
4c
Gärtner P.
Letschnig
MF.
Knollmüller M.
Völlenkle H.
Tetrahedron: Asymmetry
1999,
10:
4811
Synthetic applications of [1,2]-Wittig
rearrangement:
5a
Schreiber SL.
Goulet MT.
Schulte G.
J. Am. Chem. Soc.
1987,
109:
4718
5b
Schreiber SL.
Goulet MT.
Tetrahedron
Lett.
1987,
28:
1043
5c
Grindley TB.
Wickramage C.
J. Carbohydr.
Chem.
1988,
7:
661
5d
Yadav JS.
Ravishankar R.
Tetrahedron
Lett.
1991,
32:
2629
5e
Tomooka K.
Kikuchi M.
Igawa K.
Suzuki M.
Keong P.-H.
Nakai T.
Angew. Chem. Int. Ed.
2000,
39:
4502
6a
Curtin DY.
Leskowitz S.
J.
Am. Chem. Soc.
1951,
73:
2633
6b
Curtin DY.
Proops WR.
J.
Am. Chem. Soc.
1954,
76:
494
6c
Paquette LA.
Zeng Q.
Tetrahedron Lett.
1999,
40:
3823
6d
Vilotijevic I.
Yang J.
Hilmey D.
Paquette LA.
Synthesis
2003,
1872
7
Beaudoin Bertrand M.
Wolfe JP.
Org. Lett.
2006,
8:
4661
8
Cast J.
Stevens TS.
Holmes J.
J.
Chem. Soc.
1960,
3521
9
Miyashita A.
Matsuoka Y.
Suzuki Y.
Iwamoto K.-I.
Higashino T.
Chem.
Pharm. Bull.
1997,
45:
1235
10
Van der Stelt C.
Heus WJ.
Haasjes A.
Recl.
Trav. Chim. Pays-Bas
1973,
92:
493
11
Kitagawa O.
Momose S.-I.
Yamada Y.
Shiro M.
Taguchi T.
Tetrahedron
Lett.
2001,
42:
4865
12
Garbi A.
Allain L.
Chorki F.
Ourévitch M.
Crousse B.
Bonnet-Delpon D.
Nakai T.
Bégué J.-P.
Org. Lett.
2001,
3:
2529
13
Barbazanges M.
Meyer C.
Cossy J.
Org.
Lett.
2007,
9:
3245
14
Representative
Procedure for the Preparation of (Benzyloxy)acetamides 3
To
a solution of alcohol 1 (1.1 mmol) and
bromoacetyl-pyrrolidine (2 , 1 mmol) in
toluene (15 mL), at r.t., was added n -Bu4 NHSO4 (0.2
mmol) and a 35% aq NaOH solution (15 mL). The mixture was
then stirred vigorously at r.t., and the reaction was monitored
by TLC. After 3-4 h, H2 O (20 mL) and Et2 O
(20 mL) were added at 0 ˚C. The aqueous layer was
extracted with Et2 O (5 × 30 mL), and the combined organic
layers were washed with sat. aq NH4 Cl soln (50 mL), dried
over MgSO4 , and concentrated in vacuo. The crude residue
was purified on SiO2 (PE-EtOAc) to afford(benzyloxy)acetamide 3 . Amide 3k with R¹ = (CH2 )2 OTBS
(Table
[² ]
, entry
11) was obtained from amide 3f (Table
[¹ ]
, entry 6) by using the
following sequence: 1) O3 , MeOH, -78 ˚C
then Ph3 P, CH2 Cl2 , -78 ˚C
to r.t.; 2) NaBH4 , EtOH, 0 ˚C; 3) TBSCl,
Et3 N, DMAP, CH2 Cl2 , 0 ˚C (60% over
3 steps).
15
Representative
Procedure for the [1,2]-Wittig Rearrangement of
(Benzyloxy)acetamides 3
To a solution of(benzyloxy)acetamide 3 (0.2 mmol) in THF (3 mL), at -30 ˚C,
was added dropwise a 1 M solution of LiHMDS in THF (2.5 equiv).
The reaction mixture was then warmed to 0 ˚C over
2-3 h, before being hydrolyzed with sat. aq NH4 Cl
soln (10 mL). The aqueous layer was then extracted with Et2 O
(3 × 20 mL). The combined organic layers were dried over
MgSO4 , and concentrated in vacuo. The crude residue was
purified on SiO2 (PE-EtOAc) to afford α-hydroxyamide 4 .
16
Tomooka K.
Yamamoto H.
Nakai T.
J.
Am. Chem. Soc.
1996,
118:
3317
17a
Schöllkopf U.
Fellenberger K.
Rizk M.
Liebigs Ann. Chem.
1970,
734:
106
17b
Tomooka K.
Harada M.
Hanji T.
Nakai T.
Chem. Lett.
2000,
1394
18a
Myers AG.
Yang BH.
Kopecky DJ.
Tetrahedron Lett.
1996,
37:
3623
18b
Myers AG.
Yang BH.
Chen H.
McKinstry L.
Kopecky DJ.
Gleason JL.
J.
Am. Chem. Soc.
1997,
119:
6496
19
Tanaka T.
Hiramatsu K.
Kobayashi Y.
Ohno H.
Tetrahedron
2005,
61:
6726
20a
Lesuisse D.
Berchtold GA.
J.
Org. Chem.
1988,
53:
4992
20b
Coghlan DR.
Hamon DPG.
Massy-Westropp RA.
Slobedman D.
Tetrahedron: Asymmetry
1990,
1:
299
20c
Park J.
Pedersen SF.
Tetrahedron
1992,
48:
2069
21 Similarities in term of chemical shift
between the different hydroxyamides 4 were
particularly relevant for the proton at the α-position
of the amide, for which δmajor < δminor in
all cases.
22 In all cases ³
J
major > ³
J
minor except for hydroxyamide 4i (Table
[² ]
,
entry 9). For compound 4i , ³
J
major = 4.3
Hz and ³
J
minor = 5.0
Hz. Therefore, the syn stereochemistry remained
ambiguous in this latter case.