Synthesis 2008(15): 2467-2475  
DOI: 10.1055/s-2008-1078596
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Rhodium-Catalyzed Ring-Opening Reactions of N-Boc-azabenzonor­bornadiene with Chiral Amine Nucleophiles Derived from Amino Acids

Yong-Hwan Cho, Nai-Wen Tseng, Hisanori Senboku, Mark Lautens*
Davenport Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
Fax: +1(416)9468185; e-Mail: mlautens@chem.utoronto.ca;
Further Information

Publication History

Received 17 December 2007
Publication Date:
17 July 2008 (online)

Abstract

The rhodium-catalyzed ring-opening of azabenzonorbornadienes with chiral amino nucleophiles derived from amino ­acids such as (S)-proline and (R)-phenylglycine is reported. The desired products were obtained as a mixture of diastereomers, which could be easily separated in high yield. Enantiomerically pure ring-fused nitrogen heterocycles and 1,2-diamines were also obtained by further transformation of the ring-opened products.

    References

  • 1a Walsh PJ. Acc. Chem. Res.  2003,  36:  739 
  • 1b Ojima I. Catalytic Asymmetric Synthesis   2nd ed.:  VCH Publishers; Weinheim: 2000. 
  • 2a Fache F. Schulz E. Tommasino ML. Lemaire M. Chem. Rev.  2000,  100:  2159 
  • 2b Denmark SE. Stavenger RA. Acc. Chem. Res.  2000,  33:  432 
  • 2c Bennani YL. Hanessian S. Chem. Rev.  1997,  97:  3161 
  • 2d Togni A. Venanzi LM. Angew. Chem., Int. Ed. Engl.  1994,  33:  497 
  • 2e Tomioka K. Synthesis  1990,  541 
  • 2f Whitsell JK. Chem. Rev.  1989,  89:  1581 
  • 3a Baleiza C. Garcia H. Chem. Rev.  2006,  106:  3987 
  • 3b Yoon TP. Jacobsen EN. Science  2003,  299:  1691 
  • 3c Jacobsen EN. Acc. Chem. Res.  2000,  33:  421 
  • 4 Trost BM. Crawley ML. Chem. Rev.  2003,  103:  2921 
  • 5a Strieter ER. Blackmond DG. Buchwald SL. J. Am. Chem. Soc.  2005,  127:  4120 
  • 5b Klapars A. Huang X. Buchwald SL. J. Am. Chem. Soc.  2002,  124:  7421 
  • 5c Klapars A. Antilla JC. Huang X. Buchwald SL. J. Am. Chem. Soc.  2001,  123:  7727 
  • 5d Wolter M. Klapars A. Buchwald SL. Org. Lett.  2001,  3:  3803 
  • 6a Timerbaev AR. Hartinger CG. Aleksenko SS. Keppler BK. Chem. Rev.  2006,  106:  2224 
  • 6b Reedijk J. Chem. Commun.  1996,  801 
  • 6c Rosenberg B. VanCamp L. Trosko JE. Mansour VH. Nature  1969,  222:  385 
  • 7 Marquet A. Pure Appl. Chem.  1993,  65:  1249 
  • 8 Shinagawa S. Kanamaru T. Harada S. Asai M. Okazaki H. J. Med. Chem.  1987,  30:  1458 
  • 9a Chang A.-C. Takemori AE. Ojala WH. Gleason WB. Portoghese PS. J. Med. Chem.  1994,  37:  4490 
  • 9b Weerawarna SA. Davis RD. Nelson WL. J. Med. Chem.  1994,  37:  2856 
  • 9c Michalson ET. Szmuszkovicz J. Prog. Drug. Res.  1989,  33:  135 
  • 9d Rees DC. Prog. Med. Chem.  1992,  29:  109 
  • 9e Scopes DIC. Hayes NF. Bays DE. Belton D. Brain J. Brown DS. Judd DB. McElroy AB. Meerholtz CA. Naylor A. Hayes AG. Sheehan MJ. Birch PJ. Tyers MB. J. Med. Chem.  1992,  35:  490 
  • 9f Rajagopalan P. Scribner RM. Pennev P. Mattei PL. Kezar HS. Cheng CY. Cheeseman RS. Ganti VR. Johnson AL. Wuonola MA. Schmidt WK. Tam SW. Steinfels GF. Cook L. Bioorg. Med. Chem. Lett.  1992,  2:  721 
  • 9g Vecchietti V. Giordani A. Giardina G. Colle R. Clark GD. J. Med. Chem.  1991,  34:  397 
  • 9h Halfpenny PR. Horwell DC. Hughes J. Humblet C. Hunter JC. Neuhaus D. Rees DC. J. Med. Chem.  1991,  34:  190 
  • 9i Costello GF. Main BG. Barlow JJ. Carroll JA. Shaw JS. Eur. J. Pharmacol.  1988,  151:  475 
  • 10a Hettinger TP. Craig LC. Biochemistry  1970,  9:  1224 
  • 10b Yoshioka H. Aoki T. Goko H. Nakatsu K. Noda T. Sakakibara H. Take T. Nagata A. Abe J. Wakamiya T. Shiba T. Kaneko T. Tetrahedron Lett.  1971,  2043 
  • 10c Umezawa H. Maeda K. Takeuchi T. Okami Y. J. Antibiot. Ser. A  1966,  19:  200 
  • 11 Comprehensive Heterocyclic Chemistry   Vol. 2:  Katritzky AR. Rees CW. Scriven EFV. Elsevier; Amsterdam: 1996. 
  • 12a Yoon SS. Still WC. J. Am. Chem. Soc.  1993,  115:  823 
  • 12b Torneiro M. Still WC. Tetrahedron  1997,  53:  8739 
  • 13a Westermann B. Angew. Chem. Int. Ed.  2003,  42:  151 ; and references cited therein
  • 13b Lucet D. Le Gall T. Mioskowski C. Angew. Chem. Int. Ed.  1998,  37:  2580 ; and references cited therein
  • 14a Cho Y.-H. Zunic V. Senboku H. Olsen M. Lautens M. J. Am. Chem. Soc.  2006,  128:  6837 
  • 14b Lautens M. Fagnou K. Zunic V. Org. Lett.  2002,  4:  3465 
  • 15 Cho Y.-H. Fayol A. Lautens M. Tetrahedron: Asymmetry  2006,  17:  416 
  • 16 Villeneuve K. Tam W. J. Am. Chem. Soc.  2006,  128:  3514 
  • 17a Lautens M. Fagnou K. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5455 
  • 17b Lautens M. Fagnou K. Yang D. J. Am. Chem. Soc.  2003,  125:  14884 
  • 17c Fagnou K. Lautens M. Angew. Chem. Int. Ed.  2002,  41:  26 
  • 17d Lautens M. Fagnou K. J. Am. Chem. Soc.  2001,  123:  7170 
  • 18a Hayashi T. Yamamoto A. Hojo M. Kishi K. Ito Y. Nishioka E. Miura H. Yanagi K. J. Organomet. Chem.  1989,  370:  129 
  • 18b Schwink L. Knochel P. Chem. Eur. J.  1998,  4:  950 
  • 20a Orsini F. Selloa G. Bestettib G. Tetrahedron: Asymmetry  2001,  12:  2961 
  • 20b Mukoyama M, Imagawa K, Hata E, and Yamada T. inventors; Jpn. Kokai Tokkyo Koho,  JP 10095753.  ; Chem. Abstr. 1998, 128, 243824
  • 20c Imagawa K. Hata E. Yamada T. Mukaiyama T. Chem. Lett.  1996,  291 
  • 20d D’Andrea SV. Freeman JP. von Voigtlander PF. Szmuszkovicz J. Tetrahedron  1991,  47:  6157 
  • 20e Saito M. Kayama Y. Watanabe T. Fukushima H. Hara T. Koyano K. Takenaka A. Sasada Y. J. Med. Chem.  1980,  23:  1364 
  • 21a Comprehensive Organometallic Chemistry   Vol. 5:  Wilkinson G. Pergamon Press; London: 1982. 
  • 21b Fu GC. Nguyen ST. Grubbs RH. J. Am. Chem. Soc.  1993,  115:  9856 
  • 21c Bazan GC. Oskam JH. Cho H.-N. Park LY. Schrock RR. J. Am. Chem. Soc.  1991,  113:  6899 
  • 21d Schrock RR. Murdzek JS. Bazan GC. Robbins J. DiMare M. O’Regan M. J. Am. Chem. Soc.  1990,  112:  3875 
  • 26a Maury C. Gharbaoui T. Royer J. Husson J.-P. J. Org. Chem.  1996,  61:  3687 
  • 26b Denis J.-N. Correa A. Greene AE. J. Org. Chem.  1991,  56:  6939 
  • 27a Honda T. Wakabayashi H. Kanai K. Chem. Pharm. Bull.  2002,  50:  307 
  • 27b Van der Sluis M. Dalmolen J. De Lange B. Kaptein B. Kellogg RM. Broxterman QB. Org. Lett.  2001,  3:  3943 
  • 28 Lautens M. Schmid GA. Chau A. J. Org. Chem.  2002,  67:  8043 
19

For the preparation of 15.0 g of the ring-opened product 3 from 8.0 g of the starting material 1, 2.7 g of (S,S′)-(R,R′)-C2-Ferriphos would be required to ensure high enantio-selectivity in the catalytic ring-opening reaction.

22

To a solution of (S)-proline methyl ester hydrochloride in MeOH (0.5-1.0 M) was added 1.0 equiv of NaI solution in MeOH dropwise at r.t. The mixture was stirred at r.t. for an additional 1 h. After filtration to remove the NaCl, the solution was concentrated and the residue was dissolved in CH2Cl2 and the insoluble precipitate was filtered off again. After removal of all volatile substrates, the corresponding iodide (quantitative yield) was obtained.

23

Crystal data for 4: C15H16N2O, M = 240.30, orthorhombic, space group P212121, a = 7.3032 (2) Å, b = 12.2966 (6) Å, c = 13.5897 (6) Å, α = 90˚, β = 90˚, γ = 90˚, V = 1220.42 (9) ų, Z = 4, Dc = 1.308 Mg/m³, m(Cu-Ka) = 0.083 mm, F(000) = 512 reflections were collected, of which 9593 were considered to be observed with I > (I). The structure was determined by direct methods using the SHELXTLTM suite of programs. Hydrogen atoms were placed in calculated positions. Full-matrix least squares refinement based on F ² with anisotropic thermal parameters for the non-hydrogen atoms led to agreement factors R1 = 0.0360 and wR2 = 0.0887. Crystallographic data for the structure 4 reported in this paper have been deposited at the Cambridge Crystallographic Data Centre as supplementary material No. CCDC-639749. Copies of the data may be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1223 33603 or e-mail: deposit@ccdc.cam.ac.uk).

24

Chiral stationary phase columns (Chiralcel AS for 3b and AD for 3b′).

25

Crystal data for 3b: C21H30N2O3, M = 358.47, monoclinic, space group P21, a = 9.4130 (4) Å, b = 19.6173 (12) Å, c = 11.8127 (7) Å, α = 90˚, β = 110.225 (3)˚, γ = 90˚, V = 2046.81 (19) ų, Z = 4, Dc = 1.163 Mg/m³, m(Cu-Ka) = 0.078 mm, F(000) = 776 reflections were collected, of which 111510 were considered to be observed with I > (I). Full-matrix least squares refinement based on F ² with anisotropic thermal parameters for the nonhydrogen atoms led to agreement factors R1 = 0.0491 and wR2 = 0.1115. Crystallographic data for the structure 3b reported in this paper have been deposited at the Cambridge Crystallographic Data Centre as supplementary material No. CCDC-639748. Copies of the data may be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1223 33603 or e-mail: deposit@ccdc.cam.ac.uk).

29

Chiral stationary phase columns (Chiralcel AD for 9).