Zusammenfassung
Die künstliche Überdruckbeatmung geht mit einem erheblichen Schädigungspotential für
die Lunge einher. Bei der Wahl der Beatmungsform und der Beatmungsparameter ist daher
auf eine möglichst lungenprotektive Einstellung zu achten. Die Beatmung sollte mit
niedrigem Atemzugvolumen (6 ml/kg IKG), limitiertem Plateaudruck (30 bis 35 cm H2O) und positivem endexspiratorischen Druck (PEEP) erfolgen. Es ist derzeit unklar,
ob eine fluss– oder druckkonstante Beatmung günstiger ist. Die Anpassung von In– und
Exspirationszeit sollte die Atmungsmechanik berücksichtigen und die Generierung eines
intrinsischen PEEP verhindern. Beatmungsformen, die die Spontanatmung unterstützen,
sollten so früh wie möglich zur Anwendung kommen.
Summary
Mechanical ventilation has a considerable potential for injuring the lung tissue.
Therefore, attention has to be paid to the proper choice of ventilatory mode and settings
to secure lung–protective ventilation whenever possible. Such ventilator strategy
should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure
(30 to 35 cm H2O) and positive end–expiratory pressure (PEEP). It is unclear whether pressure controlled
or volume controlled ventilation with square flow profile is beneficial. The adjustment
of inspiration and expiration time should consider the actual breathing mechanics
and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility
of supporting spontaneous breathing should be used as soon as possible.
Schlüsselwörter
lungenprotektive Beatmung - Beatmungsform - mechanische Beatmung - assistierte Spontanatmung
- akutes Lungenversagen
Keywords
lung protective ventilation - ventilatory mode - mechanical ventilation - assisted
spontaneous breathing - acute lung injury
Kernaussagen
-
Aufgrund von fehlenden multizentrischen, randomisierten, kontrollierten Studien ist
derzeit unklar, ob eine fluss– oder eine druckkonstante Beatmung zu bevorzugen ist.
-
Die Beatmung sollte mit einem maximalen Plateaudruck von 30–35cmH2O und einem maximalen Atemzugvolumen von 6ml/kg IKG durchgeführt werden.
-
Bei kontrolliert beatmeten Patienten sollten die In– und Exspirationszeiten so gewählt
werden, dass es zu einer (nahezu) vollständigen In– und Exspiration kommt.
-
ARDS–Patienten sollten mit PEEP beatmet werden. Die Höhe des PEEP kann mit Hilfe einer
PEEP/FIO2–Tabelle, eines PEEP–Trials oder einer quasi statischen Druckvolumenschleife bestimmt
werden.
-
SIMV kann zur Entwöhnung von der Beatmung nicht mehr empfohlen werden. PSV oder intermittierende
T–Stück–Versuche erzielen bei der Entwöhnung vergleichbare Ergebnisse. Bei schwieriger
Entwöhnung kann PSV die Beatmungsdauer reduzieren.
-
Die Entwöhnung von der Beatmung sollte mit Hilfe von Entwöhnungs– und Analgosedierungsprotokollen
durchgeführt werden.
-
Die PAV zur Entwöhnung von der Beatmung ist derzeit aufgrund von notwendigen technischen
Weiterentwicklungen und fehlenden positiven randomisierten, kontrollierten Studien
nicht zu empfehlen.
-
Der Erhalt der Spontanatmung mit BIPAP zeigt sowohl bei Patienten mit und ohne Lungenschädigung
viele vorteilhafte Effekte. Andere Organsysteme werden durch BIPAP mit Spontanatmung
weniger negativ beeinflusst als bei konventioneller Beatmung.
-
APRV gewährleistet eine sichere Oxygenierung und alveoläre Ventilation und lässt eine
Spontanatmung zu. Große RKS, die APRV mit anderen Beatmungsformen vergleichen, wurden
bisher nicht durchgeführt.
Literatur
- 1
Ricard JD, Dreyfuss D, Saumon G..
Ventilator–induced lung injury.
Curr Opin Crit Care.
2002;
8
12-20
- 2
Markstaller K, Arnold M, Dobrich M. et al. .
(A software tool for automatic image–based ventilation analysis using dynamic chest
CT–scanning in healthy and in ARDS lungs).
Rofo.
2001;
173
830-835
- 3
Rappaport SH, Shpiner R, Yoshihara G. et al. .
Randomized, prospective trial of pressure–limited versus volume–controlled ventilation
in severe respiratory failure.
Crit Care Med.
1994;
22
22-32
- 4
Esteban A, Alia I, Gordo F. et al. .
Prospective randomized trial comparing pressure–controlled ventilation and volume–controlled
ventilation in ARDS. For the Spanish Lung Failure Collaborative Group.
Chest.
2000;
17
690-696
- 5
Balick–Weber CC, Nicolas P, Hedreville–Montout M. et al. .
Respiratory and haemodynamic effects of volume–controlled vs pressure–controlled ventilation
during laparoscopy: a cross–over study with echocardiographic assessment.
Br J Anaesth.
2007;
99
429-435
- 6
Davis K, Jr., Branson RD, Campbell RS, Porembka DT..
Comparison of volume control and pressure control ventilation: is flow waveform the
difference?.
J Trauma.
1996;
41
808-814
- 7
Kiehl M, Schiele C, Stenzinger W, Kienast J..
Volume–controlled versus biphasic positive airway pressure ventilation in leukopenic
patients with severe respiratory failure.
Crit Care Med.
1996;
24
780-784
- 8
Prella M, Feihl F, Domenighetti G..
Effects of short–erm pressure–controlled ventilation on gas exchange, airway pressures,
and gas distribution in patients with acute lung injury/ARDS: comparison with volume–controlled
ventilation.
Chest.
2002;
122
1382-1388
- 9
Tugrul M, Camci E, Karadeniz H. et al. .
Comparison of volume controlled with pressure controlled ventilation during one–lung
anaesthesia.
Br J Anaesth.
1997;
79
306-310
- 10
Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC..
Electrical impedance tomography: a method for monitoring regional lung aeration and
tidal volume distribution?.
Intensive Care Med.
2003;
29
2312-2316
- 11
Guttmann J, Eberhard L, Fabry B. et al. .
Determination of volume–dependent respiratory system mechanics in mechanically ventilated
patients using the new SLICE method.
Technology and Health Care.
1994;
2
175-191
- 12
Ranieri VM, Zhang H, Mascia L. et al. .
Pressure–time curve predicts minimally injurious ventilatory strategy in an isolated
rat lung model.
Anesthesiology.
2000;
93
1320-1328
- 13
Ventilation with lower tidal volumes as compared with traditional tidal volumes for
acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory
Distress Syndrome Network.
N Engl J Med.
2000;
342
1301-1308
- 14
Esteban A, Anzueto A, Frutos F. et al. .
Characteristics and outcomes in adult patients receiving mechanical ventilation: a
28–day international study.
Jama.
2002;
287
345-355
- 15
Papadakos PJ, Halloran W, Hessney JI. et al. .
The use of pressure–controlled inverse ratio ventilation in the surgical intensive
care unit.
J Trauma.
1991;
31
4-5
- 16
Markstaller K, Eberle B, Kauczor HU. et al. .
Temporal dynamics of lung aeration determined by dynamic CT in a porcine model of
ARDS.
Br J Anaesth.
2001;
87
459-468
- 17
Ferguson ND, Frutos–Vivar F, Esteban A. et al. .
Airway pressures, tidal volumes, and mortality in patients with acute respiratory
distress syndrome.
Crit Care Med.
2005;
33
21-30
- 18
Brower RG, Lanken PN, MacIntyre N. et al. .
Higher versus lower positive end–expiratory pressures in patients with the acute respiratory
distress syndrome.
N Engl J Med.
2004;
351
327-336
- 19
Amato MB, Barbas CS, Medeiros DM. et al. .
Effect of a protective–ventilation strategy on mortality in the acute respiratory
distress syndrome.
N Engl J Med.
1998;
338
347-354
- 20
Villar J..
Low vs high positive end–expiratory pressure in the ventilatory management of acute
lung injury.
Minerva Anestesiol.
2006;
72
357-362
- 21
Putensen C, Hering R, Wrigge H..
Controlled versus assisted mechanical ventilation.
Curr Opin Crit Care.
2002;
8
51-57
- 22
Esteban A, Anzueto A, Alia I. et al. .
How is mechanical ventilation employed in the intensive care unit? An international
utilization review.
Am J Respir Crit Care Med.
2000;
161
1450-1458
- 23
Esteban A, Ferguson ND, Meade MO. et al. .
Evolution of Mechanical Ventilation in Response to Clinical Research.
Am J Respir Crit Care Med.
2008;
177
170-177
- 24
Dojat M, Harf A, Touchard D. et al. .
Clinical evaluation of a computer–controlled pressure support mode.
Am J Respir Crit Care Med.
2000;
161
1161-1166
- 25
Brunner JX, Iotti GA..
Adaptive Support Ventilation (ASV).
Minerva Anestesiol.
2002;
68
365-368
- 26
Lellouche F, Mancebo J, Jolliet P. et al. .
A multicenter randomized trial of computer–driven protocolized weaning from mechanical
ventilation.
Am J Respir Crit Care Med.
2006;
174
894-900
- 27
Sinderby C, Navalesi P, Beck J. et al. .
Neural control of mechanical ventilation in respiratory failure.
Nat Med.
1999;
5
1433-1436
- 28
Younes M, Puddy A, Roberts D. et al. .
Proportional assist ventilation. Results of an initial clinical trial.
Am Rev Respir Dis.
1992;
145
121-129
- 29
Brochard L, Rauss A, Benito S. et al. .
Comparison of three methods of gradual withdrawal from ventilatory support during
weaning from mechanical ventilation.
Am J Respir Crit Care Med.
1994;
150
896-903
- 30
Esteban A, Frutos F, Tobin MJ. et al. .
A comparison of four methods of weaning patients from mechanical ventilation. Spanish
Lung Failure Collaborative Group.
N Engl J Med.
1995;
332
345-350
- 31
Vitacca M, Vianello A, Colombo D. et al. .
Comparison of two methods for weaning patients with chronic obstructive pulmonary
disease requiring mechanical ventilation for more than 15 days.
Am J Respir Crit Care Med.
2001;
164
225-230
- 32
Ely EW, Baker AM, Dunagan DP. et al. .
Effect on the duration of mechanical ventilation of identifying patients capable of
breathing spontaneously.
N Engl J Med.
1996;
335
1864-1869
- 33
Girard TD, Kress JP, Fuchs BD. et al. .
Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically
ventilated patients in intensive care (Awakening and Breathing Controlled trial):
a randomised controlled trial.
Lancet.
2008;
371
126-134
- 34
Kollef MH, Shapiro SD, Silver P. et al. .
A randomized, controlled trial of protocol–directed versus physician–directed weaning
from mechanical ventilation.
Crit Care Med.
1997;
25
567-574
- 35
Kress JP, Pohlman AS, O'Connor MF, Hall JB..
Daily interruption of sedative infusions in critically ill patients undergoing mechanical
ventilation.
N Engl J Med.
2000;
342
1471-1477
- 36
Marelich GP, Murin S, Battistella F. et al. .
Protocol weaning of mechanical ventilation in medical and surgical patients by respiratory
care practitioners and nurses: effect on weaning time and incidence of ventilator–associated
pneumonia.
Chest.
2000;
118
459-467
- 37
Appendini L, Purro A, Gudjonsdottir M. et al. .
Physiologic response of ventilator–dependent patients with chronic obstructive pulmonary
disease to proportional assist ventilation and continuous positive airway pressure.
Am J Respir Crit Care Med.
1999;
159
1510-1517
- 38
Bosma K, Ferreyra G, Ambrogio C. et al. .
Patient–ventilator interaction and sleep in mechanically ventilated patients: pressure
support versus proportional assist ventilation.
Crit Care Med.
2007;
35
1048-1054
- 39
Chiumello D, Pelosi P, Calvi E. et al. .
Different modes of assisted ventilation in patients with acute respiratory failure.
Eur Respir J.
2002;
20
925-933
- 40
Delaere S, Roeseler J, D'Hoore W. et al. .
Respiratory muscle workload in intubated, spontaneously breathing patients without
COPD: pressure support vs proportional assist ventilation.
Intensive Care Med.
2003;
29
949-954
- 41
Gay PC, Hess DR, Hill NS..
Noninvasive proportional assist ventilation for acute respiratory insufficiency. Comparison
with pressure support ventilation.
Am J Respir Crit Care Med.
2001;
164
1606-1611
- 42
Hart N, Hunt A, Polkey MI. et al. .
Comparison of proportional assist ventilation and pressure support ventilation in
chronic respiratory failure due to neuromuscular and chest wall deformity.
Thorax.
2002;
57
979-981
- 43
Passam F, Hoing S, Prinianakis G. et al. .
Effect of different levels of pressure support and proportional assist ventilation
on breathing pattern, work of breathing and gas exchange in mechanically ventilated
hypercapnic COPD patients with acute respiratory failure.
Respiration.
2003;
70
355-361
- 44
Wrigge H, Golisch W, Zinserling J. et al. .
Proportional assist versus pressure support ventilation: effects on breathing pattern
and respiratory work of patients with chronic obstructive pulmonary disease.
Intensive Care Med.
1999;
25
790-798
- 45
Stock MC, Downs JB, Frolicher DA..
Airway pressure release ventilation.
Crit Care Med.
1987;
15
462-466
- 46
Rathgeber J, Schorn B, Falk V. et al. .
The influence of controlled mandatory ventilation (CMV), intermittent mandatory ventilation
(IMV) and biphasic intermittent positive airway pressure (BIPAP) on duration of intubation
and consumption of analgesics and sedatives. A prospective analysis in 596 patients
following adult cardiac surgery.
Eur J Anaesthesiol.
1997;
14
576-582
- 47
Kazmaier S, Rathgeber J, Buhre W. et al. .
Comparison of ventilatory and haemodynamic effects of BIPAP and S–IMV/PSV for postoperative
short–term ventilation in patients after coronary artery bypass grafting.
Eur J Anaesthesiol.
2000;
17
601-610
- 48
Putensen C, Mutz NJ, Putensen–Himmer G, Zinserling J..
Spontaneous breathing during ventilatory support improves ventilation–perfusion distributions
in patients with acute respiratory distress syndrome.
Am J Respir Crit Care Med.
1999;
159
1241-1248
- 49
Hering R, Viehofer A, Zinserling J. et al. .
Effects of spontaneous breathing during airway pressure release ventilation on intestinal
blood flow in experimental lung injury.
Anesthesiology.
2003;
99
1137-1144
- 50
Putensen C, Zech S, Wrigge H. et al. .
Long–term effects of spontaneous breathing during ventilatory support in patients
with acute lung injury.
Am J Respir Crit Care Med.
2001;
164
43-49
- 51
Garner W, Downs JB, Stock MC, Rasanen J..
Airway pressure release ventilation (APRV). A human trial.
Chest.
1988;
94
779-781
- 52
Sydow M, Burchardi H, Ephraim E. et al. .
Long–term effects of two different ventilatory modes on oxygenation in acute lung
injury. Comparison of airway pressure release ventilation and volume–controlled inverse
ratio ventilation.
Am J Respir Crit Care Med.
1994;
149
1550-1556
- 53
Dart BWt, Maxwell RA, Richart CM. et al. .
Preliminary experience with airway pressure release ventilation in a trauma/surgical
intensive care unit.
J Trauma.
2005;
59
71-76
- 54
Kaplan LJ, Bailey H, Formosa V..
Airway pressure release ventilation increases cardiac performance in patients with
acute lung injury/adult respiratory distress syndrome.
Crit Care.
2001;
5
221-226
Dr. med. Dirk Schädler
Prof. Dr. med. Norbert Weiler
Email: schaedler@anaesthesie.uni-kiel.de
Email: weiler@anaesthesie.uni-kiel.de