Subscribe to RSS
DOI: 10.1160/TH07-01-0003
Staphylococcal infections impair the mesothelial fibrinolytic system: The role of cell death and cytokine release
Financial support: This work was supported by a grant from the Else Kröner-Fresenius-Stiftung (B. H.-L. and B. S.) and in part by IZKF grant Si2/039/06.Publication History
Received
04 January 2007
Accepted after resubmission
26 June 2007
Publication Date:
01 December 2017 (online)
Summary
Bacterial peritonitis is a serious complication of peritoneal dialysis patients and of patients after abdominal surgery. Especially episodes due to Staphylococcus aureus can harm the peritoneum severely, resulting in peritoneal fibrosis. Human peritoneal mesothelial cells play a critical role in maintaining the integrity of the peritoneum, as they release components of the fibrinolytic system and regulate the influx of immune cells by expressing chemokines and adhesion molecules. Using cultured human peritoneal mesothelial cells (HMCs) and blood mononuclear cells,we analyzed the effect of different staphylococcal strains on mesothelial fibrinolysis and on inflammatory reactions and show that only S. aureus strains with an invasive and hemolytic phenotype decrease the production of fibrinolytic system components, most likely via cell death induction. Furthermore, HMCs react to invading staphylococci by enhanced expression of chemokines and adhesion molecules. Mononuclear cells were activated by all staphylococcal strains tested, and their culture supernatants impaired mesothelial fibrinolysis. Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, efficiently enhanced the mesothelial fibrinolytic capacity under these inflammatory conditions, but did not protect HMCs against S. aureus-induced cell death. We conclude that only selected S. aureus strains decrease the release of fibrinolytic system components and provoke a mesothelial inflammatory response. These factors most likely contribute to peritoneal fibrosis and might account for the severe clinical presentation of S. aureus peritonitis.
-
References
- 1 Lowy FD. Staphylococcus aureus infections.. N Engl J Med 1998; 339: 520-532.
- 2 Novick R. Pathogenicity Factors and Their Regulation,. In: Gram-Positive Pathogens, Washington, D.C., American Society of Microbiology,; 2000: 392-407.
- 3 Berger D, Buttenschoen K. Management of abdominal sepsis.. Langenbecks Arch Surg 1998; 383: 35-43.
- 4 Farthmann EH, Schoffel U. Epidemiology and pathophysiology of intraabdominal infections (IAI).. Infection 1998; 26: 329-334.
- 5 Fried L, Piraino B. Peritonitis.. In: Textbook of Peritoneal Dialysis, Kluwer Academic Publishers,; 2000: 545-564.
- 6 Coles GA, Williams JD, Topley N. Peritoneal inflammation and long-term changes in peritoneal structure and function.. In: Textbook of Peritoneal Dialysis,. 2nd ed., Kluwer Academic Publishers,; 2000: 565-583.
- 7 Menzies D. Postoperative adhesions: their treatment and relevance in clinical practice.. Ann R Coll Surg Engl 1993; 75: 147-153.
- 8 van Hinsbergh VW, Kooistra T, Scheffer MA. et al. Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells.. Blood 1990; 75: 1490-1497.
- 9 Goedde M, Sitter T, Schiffl H. et al. Coagulationand fibrinolysis-related antigens in plasma and dialysate of CAPD patients.. Perit Dial Int 1997; 17: 162-166.
- 10 Sitter T, Spannagl M, Schiffl H. et al. Imbalance between intraperitoneal coagulation and fibrinolysis during peritonitis of CAPD patients: the role of mesothelial cells.. Nephrol Dial Transplant 1995; 10: 677-683.
- 11 Hellebrekers BW, Emeis JJ, Kooistra T. et al. A role for the fibrinolytic system in postsurgical adhesion formation.. Fertil Steril 2005; 83: 122-129.
- 12 Dobbie JW, Jasani MK. Role of imbalance of intracavity fibrin formation and removal in the pathogenesis of peritoneal lesions in CAPD.. Perit Dial Int 1997; 17: 121-124.
- 13 Hausmann MJ, Rogachev B, Weiler M. et al. Accessory role of human peritoneal mesothelial cells in antigen presentation and T-cell growth.. Kidney Int 2000; 57: 476-486.
- 14 Li FK, Davenport A, Robson RL. et al. Leukocyte migration across human peritoneal mesothelial cells is dependent on directed chemokine secretion and ICAM-1 expression.. Kidney Int 1998; 54: 2170-2183.
- 15 Yao V, Platell C, Hall JC. Role of peritoneal mesothelial cells in peritonitis.. Br J Surg 2003; 90: 1187-1194.
- 16 Tekstra J, Visser CE, Tuk CW. et al. Identification of the major chemokines that regulate cell influxes in peritoneal dialysis patients.. J Am Soc Nephrol 1996; 7: 2379-2384.
- 17 Jonjic N, Peri G, Bernasconi S. et al. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells.. J Exp Med 1992; 176: 1165-1174.
- 18 Visser CE, Steenbergen JJ, Betjes MG. et al. Interleukin- 8 production by human mesothelial cells after direct stimulation with staphylococci.. Infect Immun 1995; 63: 4206-4209.
- 19 Visser CE, Tekstra J, Brouwer-Steenbergen JJ. et al. Chemokines produced by mesothelial cells: huGROalpha, IP-10, MCP-1 and RANTES.. Clin Exp Immunol 1998; 112: 270-275.
- 20 Fried L, Abidi S, Bernardini J. et al. Hospitalization in peritoneal dialysis patients.. Am J Kidney Dis 1999; 33: 927-933.
- 21 Krishnan M, Thodis E, Ikonomopoulos D. et al. Predictors of outcome following bacterial peritonitis in peritoneal dialysis.. Perit Dial Int 2002; 22: 573-581.
- 22 Tranaeus A, Heimburger O, Lindholm B. Peritonitis in continuous ambulatory peritoneal dialysis (CAPD): diagnostic findings, therapeutic outcome and complications.. Perit Dial Int 1989; 9: 179-190.
- 23 Haslinger B, Strangfeld K, Peters G. et al. Staphylococcus aureus alpha-toxin induces apoptosis in peripheral blood mononuclear cells: role of endogenous tumour necrosis factor-alpha and the mitochondrial death pathway.. Cell Microbiol 2003; 5: 729-741.
- 24 Jeyaseelan S. Activation induced by pore-forming bacterial toxins.. Trends Microbiol 2001; 9: 416-417.
- 25 Jonas D, Walev I, Berger T. et al. Novel path to apoptosis: small transmembrane pores created by staphylococcal alpha-toxin in T lymphocytes evoke internucleosomal DNA degradation.. Infect Immun 1994; 62: 1304-1312.
- 26 Haagen IA, Heezius HC, Verkooyen RP. et al. Adherence of peritonitis-causing staphylococci to human peritoneal mesothelial cell monolayers.. J Infect Dis 1990; 161: 266-273.
- 27 Haslinger-Löffler B, Wagner B, Brück M. et al. Staphylococcus aureus induces caspase-independent cell death in human peritoneal mesothelial cells.. Kidney Int 2006; 70: 1089-1098.
- 28 Sinha B, Francois PP, Nüsse O. et al. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1.. Cell Microbiol 1999; 1: 101-117.
- 29 Sitter T, Haslinger B, Mandl S. et al. High glucose increases prostaglandin E2 synthesis in human peritoneal mesothelial cells: role of hyperosmolarity.. J Am Soc Nephrol 1998; 9: 2005-2012.
- 30 Proctor RA, Christman G, Mosher DF. Fibronectininduced agglutination of Staphylococcus aureus correlates with invasiveness.. J Lab Clin Med 1984; 104: 455-469.
- 31 Enright MC, Robinson DA, Randle G. et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA).. Proc Natl Acad Sci USA 2002; 99: 7687-7692.
- 32 Juuti KM, Sinha B, Werbick C. et al. Reduced adherence and host cell invasion by methicillin-resistant Staphylococcus aureus expressing the surface protein Pls.. J Infect Dis 2004; 189: 1574-1584.
- 33 Sinha B, Francois P, Que YA. et al. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells.. Infect Immun 2000; 68: 6871-6878.
- 34 Strindhall J, Lindgren PE, Lofgren S. et al. Variations among clinical isolates of Staphylococcus aureus to induce expression of E-selectin and ICAM-1 in human endothelial cells.. FEMS Immunol Med Microbiol 2002; 32: 227-235.
- 35 Sitter T, Toet K, Fricke H. et al. Modulation of procoagulant and fibrinolytic system components of mesothelial cells by inflammatory mediators.. Am J Physiol 1996; 271: 1256-1263.
- 36 Brauner A, Hylander B, Wretlind B. Interleukin-6 and interleukin-8 in dialysate and serum from patients on continuous ambulatory peritoneal dialysis.. Am J Kidney Dis 1993; 22: 430-435.
- 37 Haslinger B, Goedde MF, Toet KH. et al. Simvastatin increases fibrinolytic activity in human peritoneal mesothelial cells independent of cholesterol lowering.. Kidney Int 2002; 62: 1611-1619.
- 38 Haslinger B, Kleemann R, Toet KH. et al. Simvastatin suppresses tissue factor expression and increases fibrinolytic activity in tumor necrosis factor-alpha-activated human peritoneal mesothelial cells.. Kidney Int 2003; 63: 2065-2074.
- 39 Mandl-Weber S, Cohen CD, Haslinger B. et al. Vascular endothelial growth factor production and regulation in human peritoneal mesothelial cells.. Kidney Int 2002; 61: 570-578.
- 40 Marshall BC, Santana A, Xu QP. et al. Metalloproteinases and tissue inhibitor of metalloproteinases in mesothelial cells. Cellular differentiation influences expression.. J Clin Invest 1993; 91: 1792-1799.
- 41 Holmdahl L, Falkenberg M, Ivarsson ML. et al. Plasminogen activators and inhibitors in peritoneal tissue.. APMIS 1997; 105: 25-30.
- 42 Holmdahl L. The role of fibrinolysis in adhesion formation.. Eur J Surg 1997; Suppl: 24-31.
- 43 Ivarsson ML, Holmdahl L, Falk P. et al. Characterization and fibrinolytic properties of mesothelial cells isolated from peritoneal lavage.. Scand J Clin Lab Invest 1998; 58: 195-203.
- 44 Mandl-Weber S, Haslinger B, Lederer SR. et al. Heat-killed microorganisms induce PAI-1 expression in human peritoneal mesothelial cells: role of interleukin- 1alpha.. Am J Kidney Dis 2001; 37: 815-819.
- 45 Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis.. Perit Dial Int 1992; 12: 14-27.
- 46 Vipond MN, Whawell SA, Thompson JN. et al. Effect of experimental peritonitis and ischaemia on peritoneal fibrinolytic activity.. Eur J Surg 1994; 160: 471-477.
- 47 Heilmann C, Gerke C, Perdreau-Remington F. et al. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation.. Infect Immun 1996; 64: 277-282.
- 48 Novick R. Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus.. Virology 1967; 33: 155-166.