Thromb Haemost 2007; 98(03): 512-520
DOI: 10.1160/TH07-02-0117
Theme Issue Article
Schattauer GmbH

Fibrinolysis and host response in bacterial infections

Simone Bergmann
1   Max von Pettenkofer Institute, Ludwig-Maximilians-University of Munich, Munich, Germany
,
Sven Hammerschmidt
1   Max von Pettenkofer Institute, Ludwig-Maximilians-University of Munich, Munich, Germany
› Author Affiliations
Further Information

Publication History

Received 15 February 2007

Accepted after resubmission 02 July 2007

Publication Date:
28 November 2017 (online)

Summary

The plasminogen activation system is part of the fibrinolysis which is tightly regulated and protected against dysfunction by various activators and inhibitors. However, microorganisms including bacteria, fungi and also parasites have been proven to interact in a specific manner with components of the fibrinolytic pathways. Pathogenic bacteria are capable to subvert the function of proteases, activators or inhibitors for their own benefits including dissemination within the host and evasion of host inflammatory immune response. Here, we provide a state of the art overview of the divers strategies employed by bacteria to interact with components of the fibrinolytic system and to exploit the system for invasion. Moreover, the role of factors of the fibrinolytic cascade in inflammatory host response due to different bacterial infections will be presented.

 
  • References

  • 1 Levi M, van der Poll T, Buller HR. Bidirectional relation between inflammation and coagulation. Circulation 2004; 109: 2698-2704.
  • 2 Miyashita C, Wenzel E, Heiden M. Plasminogen: a brief introduction into its biochemistry and function. Haemostasis 1988; 18: 7-13.
  • 3 Collen D, De C, Verstraete M. Immunochemical distinction between antiplasmin and alpha-antitrypsin. Thromb Res 1975; 7: 245-249.
  • 4 Chu CT, Howard GC, Misra UK. et al. Alpha 2-macroglobulin: a sensor for proteolysis. Ann NY Acad Sci 1994; 737: 291-307.
  • 5 Duval-Jobe C, Parmely MJ. Regulation of plasminogen activation by human U937 promonocytic cells. J Biol Chem 1994; 269: 21353-21357.
  • 6 Hantai D, Festoff BW. Degradation of muscle basement membrane zone by locally generated plasmin. Exp Neurol 1987; 95: 44-55.
  • 7 Wong AP, Cortez SL, Baricos WH. Role of plasmin and gelatinase in extracellular matrix degradation by cultured rat mesangial cells. Am J Physiol 1992; 263: F1112-1118.
  • 8 Wang X, Lin X, Loy JA. et al. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 1998; 281: 1662-1665.
  • 9 Lahteenmaki K, Edelman S, Korhonen TK. Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 2005; 13: 79-85.
  • 10 Wang H, Lottenberg R, Boyle MD. Analysis of the interaction of group A streptococci with fibrinogen, streptokinase and plasminogen. Microb Pathog 1995; 18: 153-166.
  • 11 Lottenberg R, Broder CC, Boyle MD. et al. Cloning, sequence analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J Bacteriol 1992; 174: 5204-5210.
  • 12 Wiman B. On the reaction of plasmin or plasminstreptokinase complex with aprotinin or alpha 2-antiplasmin. Thromb Res 1980; 17: 143-152.
  • 13 Gladysheva IP, Turner RB, Sazonova IY. et al. Coevolutionary patterns in plasminogen activation. Proc Natl Acad Sci USA 2003; 100: 9168-9172.
  • 14 Sun H, Ringdahl U, Homeister JW. et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 2004; 305: 1283-1286.
  • 15 Rabijns A, De Bondt HL, De Ranter C. Three-dimensional structure of staphylokinase, a plasminogen activator with therapeutic potential. Nat Struct Biol 1997; 4: 357-360.
  • 16 Molkanen T, Tyynela J, Helin J. et al. Enhanced activation of bound plasminogen on Staphylococcus aureus by staphylokinase. FEBS Lett 2002; 517: 72-78.
  • 17 Warmerdam PA, Vanderlick K, Vandervoort P. et al. Staphylokinase-specific cell-mediated immunity in humans. J Immunol 2002; 168: 155-161.
  • 18 Jin T, Bokarewa M, Foster T. et al. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 2004; 172: 1169-1176.
  • 19 Yang D, Biragyn A, Kwak LW. et al. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 2002; 23: 291-296.
  • 20 Sakharov DV, Lijnen HR, Rijken DC. Interactions between staphylokinase, plasmin(ogen), and fibrin. Staphylokinase discriminates between free plasminogen and plasminogen bound to partially degraded fibrin. J Biol Chem 1996; 271: 27912-27918.
  • 21 Collen D. Staphylokinase: a potent, uniquely fibrin- selective thrombolytic agent. Nat Med 1998; 4: 279-284.
  • 22 Szemraj J, Walkowiak B, Kawecka I. et al. A new recombinant thrombolytic and antithrombotic agent with higher fibrin affinity-a staphylokinase variant. I. In vitro study. J Thromb Haemost 2005; 3: 2156-2165.
  • 23 Leigh JA. Purification of a plasminogen activator from Streptococcus uberis . FEMS Microbiol Lett 1994; 118: 153-158.
  • 24 Johnsen LB, Poulsen K, Kilian M. et al. Purification and cloning of a streptokinase from Streptococcus uberis . Infect Immun 1999; 67: 1072-1078.
  • 25 Johnsen LB, Rasmussen LK, Petersen TE. et al. Kinetic and structural characterization of a two-domain streptokinase: dissection of domain functionality. Biochemistry 2000; 39: 6440-6448.
  • 26 Nowicki ST, Minning-Wenz D, Johnston KH. et al. Characterization of a novel streptokinase produced by Streptococcus equisimilis of non-human origin. Thromb Haemost 1994; 72: 595-603.
  • 27 Leigh JA, Hodgkinson SM, Lincoln RA. The interaction of Streptococcus dysgalactiae with plasmin and plasminogen. Vet Microbiol 1998; 61: 121-135.
  • 28 Sodeinde OA, Sample AK, Brubaker RR. et al. Plasminogen activator/coagulase gene of Yersinia pestis is responsible for degradation of plasmid-encoded outer membrane proteins. Infect Immun 1988; 56: 2749-2752.
  • 29 Kukkonen M, Korhonen TK. The omptin family of enterobacterial surface proteases/adhesins: from housekeeping in Escherichia coli to systemic spread of Yersinia pestis . Int J Med Microbiol 2004; 294: 7-14.
  • 30 Kukkonen M, Lahteenmaki K, Suomalainen M. et al. Protein regions important for plasminogen activation and inactivation of alpha2-antiplasmin in the surface protease Pla of Yersinia pestis . Mol Microbiol 2001; 40: 1097-1111.
  • 31 Holmberg SR. Thrombolysis in acute myocardial infarction. Br J Hosp Med 1992; 47: 572-576 578–580.
  • 32 Sodeinde OA, Subrahmanyam YV, Stark K. et al. A surface protease and the invasive character of plague. Science 1992; 258: 1004-1007.
  • 33 Stumpe S, Schmid R, Stephens DL. et al. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli . J Bacteriol 1998; 180: 4002-4006.
  • 34 Sugimura K, Nishihara T. Purification, characterization, and primary structure of Escherichia coli protease VII with specificity for paired basic residues: identity of protease VII and OmpT. J Bacteriol 1988; 170: 5625-5632.
  • 35 Guina T, Yi EC, Wang H. et al. A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 2000; 182: 4077-4086.
  • 36 Boyle MD, Lottenberg R. Plasminogen activation by invasive human pathogens. Thromb Haemost 1997; 77: 1-10.
  • 37 Kukkonen M, Suomalainen M, Kyllonen P. et al. Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica . Mol Microbiol 2004; 51: 215-225.
  • 38 Pouillot F, Derbise A, Kukkonen M. et al. Evaluation of O-antigen inactivation on Pla activity and virulence ofYersinia pseudotuberculosis harbouring the Pla plasmid. Microbiology 2005; 151: 3759-3768.
  • 39 Lobo LA. Adhesive properties of the purified plasminogen activator Pla of Yersinia pestis . FEMS Microbiol Lett 2006; 262: 158-162.
  • 40 Benedek O, Bene J, Melegh B. et al. Mapping of possible laminin binding sites of Y. pestis plasminogen activator (Pla) via phage display. Adv Exp Med Biol 2003; 529: 101-104.
  • 41 Benedek O, Khan AS, Schneider G. et al. Identification of laminin-binding motifs ofYersinia pestis plasminogen activator by phage display. Int J Med Microbiol 2005; 295: 87-98.
  • 42 Benedek O, Nagy G, Emody L. Intracellular signalling and cytoskeletal rearrangement involved in Yersinia pestis plasminogen activator (Pla) mediated HeLa cell invasion. Microb Pathog 2004; 37: 47-54.
  • 43 Sebbane F, Jarrett CO, Gardner D. et al. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci USA 2006; 103: 5526-5530.
  • 44 Lathem WW, Price PA, Miller VL. et al. A plasminogen- activating protease specifically controls the development of primary pneumonic plague. Science 2007; 31: 509-513.
  • 45 Lahteenmaki K, Kuusela P, Korhonen TK. Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 2001; 25: 531-552.
  • 46 Miles LA, Plow EF. Binding and activation of plasminogen on the platelet surface. J Biol Chem 1985; 260: 4303-4311.
  • 47 Plow EF, Freaney DE, Plescia J. et al. The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J Cell Biol 1986; 103: 2411-2420.
  • 48 Rouy D, Angles-Cano E. The mechanism of activation of plasminogen at the fibrin surface by tissuetype plasminogen activator in a plasma milieu in vitro. Role of alpha 2-antiplasmin. Biochem J 1990; 271: 51-57.
  • 49 Plow EF, Ploplis VA, Busuttil S. et al. A role of plasminogen in atherosclerosis and restenosis models in mice. Thromb Haemost 1999; 82: 4-7.
  • 50 Lijnen HR, Collen D. Fibrinolytic agents: mechanisms of activity and pharmacology. Thromb Haemost 1995; 74: 387-390.
  • 51 Crippa MP. Urokinase-type plasminogen activator. Int J Biochem Cell Biol 2007; 39: 690-694.
  • 52 Ploug M, Behrendt N, Lober D. et al. Protein structure and membrane anchorage of the cellular receptor for urokinase-type plasminogen activator. Semin Thromb Hemost 1991; 17: 183-193.
  • 53 Cubellis MV, Nolli ML, Cassani G. et al. Binding of single-chain prourokinase to the urokinase receptor of human U937 cells. J Biol Chem 1986; 261: 15819-15822.
  • 54 Miles LA, Plow EF. Receptor mediated binding of the fibrinolytic components, plasminogen and urokinase, to peripheral blood cells. Thromb Haemost 1987; 58: 936-942.
  • 55 Nykjaer A, Kjoller L, Cohen RL. et al. Regions involved in binding of urokinase-type-1 inhibitor complex and pro-urokinase to the endocytic alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. Evidence that the urokinase receptor protects pro-urokinase against binding to the endocytic receptor. J Biol Chem 1994; 269: 25668-25676.
  • 56 Nykjaer A, Petersen CM, Moller B. et al. Identification and characterization of urokinase receptors in natural killer cells and T-cell-derived lymphokine activated killer cells. FEBS Lett 1992; 300: 13-17.
  • 57 Bernal D, de la Rubia JE, Carrasco-Abad AM. et al. Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica . FEBS Lett 2004; 563: 203-206.
  • 58 Fox D, Smulian AG. Plasminogen-binding activity of enolase in the opportunistic pathogen Pneumocystis carinii . Med Mycol 2001; 39: 495-507.
  • 59 Ge J, Catt DM, Gregory RL. Streptococcus mutans surface alpha-enolase binds salivary mucin MG2 and human plasminogen. Infect Immun 2004; 72: 6748-6752.
  • 60 Bergmann S, Rohde M, Chhatwal GS. et al. alpha- Enolase of Streptococcus pneumoniae is a plasmin( ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 2001; 40: 1273-1287.
  • 61 Pancholi V, Fischetti VA. alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 1998; 273: 14503-14515.
  • 62 Schaumburg J, Diekmann O, Hagendorff P. et al. The cell wall subproteome of Listeria monocytogenes . Proteomics 2004; 4: 2991-3006.
  • 63 Bergmann S, Rohde M, Chhatwal GS. et al. Characterization of plasmin(ogen) binding to Streptococcus pneumoniae . Indian J Med Res 2004; 119: 29-32.
  • 64 Ehinger S, Schubert WD, Bergmann S. et al. Plasmin( ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin( ogen)-binding sites. J Mol Biol 2004; 343: 997-1005.
  • 65 Jin H, Song YP, Boel G. et al. Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J Mol Biol 2005; 350: 27-41.
  • 66 Bergmann S, Rohde M, Hammerschmidt S. Glyceraldehyde- 3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen binding protein. Infect Immun 2004; 72: 2416-2419.
  • 67 Blasi F. uPA, uPAR, PAI-1: key intersection of proteolytic, adhesive and chemotactic highways?. Immunol Today 1997; 18: 415-417.
  • 68 Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 2002; 3: 932-943.
  • 69 Pancholi V, Fischetti VA. A novel plasminogen/ plasmin binding protein on the surface of group A streptococci. Adv Exp Med Biol 1997; 418: 597-599.
  • 70 Boel G, Jin H, Pancholi V. Inhibition of cell surface export of group A streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. Infect Immun 2005; 73: 6237-6248.
  • 71 Jolodar A, Fischer P, Bergmann S. et al. Molecular cloning of an alpha-enolase from the human filarial parasite Onchocerca volvulus that binds human plasminogen. Biochim Biophys Acta 2003; 1627: 111-120.
  • 72 Jong AY, Chen SH, Stins MF. et al. Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol 2003; 52: 615-622.
  • 73 Pancholi V. Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 2001; 58: 902-920.
  • 74 Bergmann S, Rohde M, Preissner KT. et al. The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 2005; 94: 304-311.
  • 75 Bergmann S, Wild D, Diekmann O. et al. Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae . Mol Microbiol 2003; 49: 411-423.
  • 76 Berge A, Sjobring U. PAM, a novel plasminogenbinding protein from Streptococcus pyogenes . J Biol Chem 1993; 268: 25417-25424.
  • 77 Benach JL, Bosler EM, Hanrahan JP. et al. Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med 1983; 308: 740-742.
  • 78 Fuchs H, Wallich R, Simon MM. et al. The outer surface protein A of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc Natl Acad Sci USA 1994; 91: 12594-12598.
  • 79 Klempner MS, Noring R, Epstein MP. et al. Binding of human plasminogen and urokinase-type plasminogen activator to the Lyme disease spirochete, Borrelia burgdorferi . J Infect Dis 1995; 171: 1258-1265.
  • 80 Hu LT, Perides G, Noring R. et al. Binding of human plasminogen to Borrelia burgdorferi . Infect Immun 1995; 63: 3491-3496.
  • 81 Coleman JL, Roemer EJ, Benach JL. Plasmincoated Borrelia burgdorferi degrades soluble and insoluble components of the mammalian extracellular matrix. Infect Immun 1999; 67: 3929-3936.
  • 82 Coleman JL, Benach JL. The generation of enzymatically active plasmin on the surface of spirochetes. Methods 2000; 21: 133-141.
  • 83 Coleman JL, Sellati TJ, Testa JE. et al. Borrelia burgdorferi binds plasminogen, resulting in enhanced penetration of endothelial monolayers. Infect Immun 1995; 63: 2478-2484.
  • 84 Grab DJ, Perides G, Dumler JS. et al. Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infect Immun 2005; 73: 1014-1022.
  • 85 Gebbia JA, Monco JC, Degen JL. et al. The plasminogen activation system enhances brain and heart invasion in murine relapsing fever borreliosis. J Clin Invest 1999; 103: 81-87.
  • 86 Schwan TG, Piesman J, Golde WT. et al. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci USA 1995; 92: 2909-2913.
  • 87 Liang FT, Nelson FK, Fikrig E. Molecular adaptation of Borrelia burgdorferi in the murine host. J Exp Med 2002; 196: 275-280.
  • 88 de Silva AM, Telford 3rd SR, Brunet LR. et al. Borrelia burgdorferi OspA is an arthropod-specific transmission- blocking Lyme disease vaccine. J Exp Med 1996; 183: 271-275.
  • 89 Pantzar M, Ljungh A, Wadstrom T. Plasminogen binding and activation at the surface of Helicobacter pylori CCUG 17874. Infect Immun 1998; 66: 4976-4980.
  • 90 Ringner M, Valkonen KH, Wadstrom T. Binding of vitronectin and plasminogen to Helicobacter pylori . FEMS Immunol Med Microbiol 1994; 9: 29-34.
  • 91 Montemurro P, Barbuti G, Dundon WG. et al. Helicobacter pylori neutrophil-activating protein stimulates tissue factor and plasminogen activator inhibitor- 2 production by human blood mononuclear cells. J Infect Dis 2001; 183: 1055-1062.
  • 92 Varro A, Noble PJ, Pritchard DM. et al. Helicobacter pylori induces plasminogen activator inhibitor 2 in gastric epithelial cells through nuclear factor-kappaB and RhoA: implications for invasion and apoptosis. Cancer Res 2004; 64: 1695-1702.
  • 93 Colucci M, Rossiello MR, Pentimone A. et al. Changes in coagulation-fibrinolysis balance in blood mononuclear cells and in gastric mucosa from patients with Helicobacter pylori infection. Thromb Res 2005; 116: 471-477.
  • 94 Szaba FM, Smiley ST. Roles for thrombin and fibrin( ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 2002; 99: 1053-1059.
  • 95 van der Poll TLM. Mechanisms of action of activated protein C: an evolving story. Crit Care Med 2004; 32: 1086-1087.
  • 96 Brodsky SV, Malinowski K, Golightly M. et al. Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential. Circulation 2002; 106: 2372-2378.
  • 97 Hermans PW, Hazelzet JA. Plasminogen activator inhibitor type 1 gene polymorphism and sepsis. Clin Infect Dis 2005; 41 (Suppl. 07) S453-458.
  • 98 Abraham E. Coagulation abnormalities in acute lung injury and sepsis. Am J Respir Cell Mol Biol 2000; 22: 401-404.
  • 99 Yamamoto K, Loskutoff DJ. Fibrin deposition in tissues from endotoxin-treated mice correlates with decreases in the expression of urokinase-type but not tissue- type plasminogen activator. J Clin Invest 1996; 97: 2440-2451.
  • 100 Waltz DA, Natkin LR, Fujita RM. et al. Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Invest 1997; 100: 58-67.
  • 101 Kjoller L, Kanse SM, Kirkegaard T. et al. Plasminogen activator inhibitor-1 represses integrin- and vitronectin- mediated cell migration independently of its function as an inhibitor of plasminogen activation. Exp Cell Res 1997; 232: 420-429.
  • 102 Deng G, Curriden SA, Wang S. et al. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release?. J Cell Biol 1996; 134: 1563-1571.
  • 103 Rijneveld AW, Florquin S, Bresser P. et al. Plasminogen activator inhibitor type-1 deficiency does not influence the outcome of murine pneumococcal pneumonia. Blood 2003; 102: 934-939.
  • 104 Rijneveld AW, van den Dobbelsteen GP, Florquin S. et al. Roles of interleukin-6 and macrophage inflammatory protein-2 in pneumolysin-induced lung inflammation in mice. J Infect Dis 2002; 185: 123-126.
  • 105 Renckens R, Roelofs JJ, Bonta PI. et al. Plasminogen activator inhibitor type 1 is protective during severe Gram-negative pneumonia. Blood 2007; 109: 1593-1601.
  • 106 Gyetko MR, Sud S, Kendall T. et al. Urokinase receptor-deficient mice have impaired neutrophil recruitment in response to pulmonary Pseudomonas aeruginosa infection. J Immunol 2000; 165: 1513-1519.
  • 107 Scheld WM, Koedel U, Nathan B. et al. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 2002; 186 (Suppl. 02) S225-233.
  • 108 Koedel U, Scheld WM, Pfister HW. Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2002; 2: 721-736.
  • 109 Winkler F, Kastenbauer S, Koedel U. et al. Role of urokinase plasminogen activator system in patients with bacterial meningitis. Neurol 2002; 59: 1350-1355.
  • 110 Paul R, Angele B, Sporer B. et al. Inflammatory response during bacterial meningitis is unchanged in Fasand Fas ligand-deficient mice. J Neuroimmunol 2004; 152: 78-82.
  • 111 Coleman JL, Gebbia JA, Benach JL. Borrelia burgdorferi and other bacterial products induce expression and release of the urokinase receptor (CD87). J Immunol 2001; 166: 473-480.
  • 112 Salazar JC, Pope CD, Sellati TJ. et al. Coevolution of markers of innate and adaptive immunity in skin and peripheral blood of patients with erythema migrans. J Immunol 2003; 171: 2660-2670.
  • 113 Coleman JL, Benach JL. The urokinase receptor can be induced by Borrelia burgdorferi through receptors of the innate immune system. Infect Immun 2003; 71: 5556-5564.
  • 114 Coleman JL, Gebbia JA, Piesman J. et al. Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 1997; 89: 1111-1119.
  • 115 Gebbia JA, Coleman JL, Benach JL. Borrelia spirochetes upregulate release and activation of matrix metalloproteinase gelatinase B (MMP-9) and collagenase 1 (MMP-1) in human cells. Infect Immun 2001; 69: 456-462.
  • 116 Hu LT, Eskildsen MA, Masgala C. et al. Host metalloproteinases in Lyme arthritis. Arthritis Rheum 2001; 44: 1401-1410.
  • 117 Hu LT, Pratt SD, Perides G. et al. Isolation, cloning, and expression of a 70-kilodalton plasminogen binding protein of Borrelia burgdorferi . Infect Immun 1997; 65: 4989-4995.
  • 118 Kirchner A, Koedel U, Fingerle V. et al. Upregulation of matrix metalloproteinase-9 in the cerebrospinal fluid of patients with acute Lyme neuroborreliosis. J Neurol Neurosurg Psychiatry 2000; 68: 368-371.
  • 119 Perides G, Tanner-Brown LM, Eskildsen MA. et al. Borrelia burgdorferi induces matrix metalloproteinases by neural cultures. J Neurosci Res 1999; 58: 779-790.
  • 120 Haile WB, Coleman JL, Benach JL. Reciprocal upregulation of urokinase plasminogen activator and its inhibitor, PAI-2, by Borrelia burgdorferi affects bacterial penetration and host-inflammatory response. Cell Microbiol 2006; 8: 1349-1360.
  • 121 Carmeliet P, Collen D. Genetic analysis of the plasminogen and coagulation system in mice. Haemostasis 1996; 26 (Suppl. 04) 132-153.
  • 122 Carmeliet P, Collen D. Vascular development and disorders: molecular analysis and pathogenic insights. Kidney Int 1998; 53: 1519-1549.
  • 123 Degen JL, Drew AF, Palumbo JS. et al. Genetic manipulation of fibrinogen and fibrinolysis in mice. Ann NY Acad Sci 2001; 936: 276-290.
  • 124 Ploplis VA, French EL, Carmeliet P. et al. Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood 1998; 91: 2005-2009.
  • 125 Candela M, Bergmann S, Vici M. et al. Binding of human plasminogen to Bifidobacterium . J Bacteriol. 2007 in press.
  • 126 Hurmalainen V, Edelman S, Antikainen J. et al. Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 2007; 153: 1112-1122.