Subscribe to RSS
DOI: 10.1160/TH09-11-0763
Gamma-glutamyl carboxylase and its influence on warfarin dose
Financial support:This study was supported by the NIH (R01 HL074724, R01 HL097036, R01 HL57951, R01 HL58036) and the American Heart Association.Publication History
Received:
10 November 2009
Accepted after major revision:
08 June 2010
Publication Date:
24 November 2017 (online)
Summary
Via generation of vitamin K-dependent proteins, gamma-glutamyl carboxylase (GGCX) plays a critical role in the vitamin K cycle. Single nucleotide polymorphisms (SNPs) in GGCX, therefore, may affect dosing of the vitamin K antagonist, warfarin. In a multi-centered, cross-sectional study of 985 patients prescribed warfarin therapy, we genotyped for two GGCX SNPs (rs11676382 and rs12714145) and quantified their relationship to therapeutic dose. GGCX rs11676382 was a significant (p=0.03) predictor of residual dosing error and was associated with a 6.1% reduction in warfarin dose (95% CI: 0.6%-11.4%) per G allele. The prevalence was 14.1% in our predominantly (78%) Caucasian cohort, but the overall contribution to dosing accuracy was modest (partial R2 = 0.2%). GGCX rs12714145 was not a significant predictor of therapeutic dose (p = 0.26). GGCX rs11676382 is a statistically significant predictor of warfarin dose, but the clinical relevance is modest. Given the potentially low marginal cost of adding this SNP to existing geno-typing platforms, we have modified our non-profit website (www.WarfarinDosing.org) to accommodate knowledge of this variant.
-
References
- 1 FDA Approves Updated Warfarin (Coumadin) Prescribing Information: New Genetic Information May Help Providers Improve Initial Dosing Estimates of the Anticoagulant for Individual Patients. FDA News 2007 [cited August 16, 2007]; Available from: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2007/ucm108967.htm
- 2 Safety Labeling Changes Approved By FDA Center for Drug Evaluation and Research (CDER) – January 2010. Safety 2010 [cited 2010 March 10]; Available from: http://www.fda.gov/Safety/MedWatch/SafetyInformation/ucm201100
- 3 Wood S. New Warfarin Labeling Reminds Physicians About Genetic Tests to Help Guide Initial Warfarin Dosing. 2007 [cited 2007 Sept 4, 2007]; Available from: http://www.medscape.com/viewarticle/561608
- 4 Rieder MJ, Reiner AP, Gage BF. et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005; 352: 2285-2293.
- 5 Sconce EA, Khan TI, Wynne HA. et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005; 106: 2329-2333.
- 6 Wadelius M, Chen LY, Downes K. et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 5: 262-270.
- 7 Herman D, Locatelli I, Grabnar I. et al. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J 2005; 5: 193-202.
- 8 Gage BF, Eby C, Johnson JA. et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Therapeut 2008; 84: 326-331.
- 9 Klein TE, Altman RB, Eriksson N. et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009; 360: 753-764.
- 10 Caldwell MD, Awad T, Johnson JA. et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008; 111: 4106-4112.
- 11 Voora D, Koboldt DC, King CR. et al. A Polymorphism in the VKORC1 Regulator Calumenin Predicts Higher Warfarin Dose Requirements in African Americans. Clin Pharmacol Therapeut 2010; 87: 445-451.
- 12 Cavallari LH, Langaee TY, Momary KM. et al. Genetic and Clinical Predictors of Warfarin Dose Requirements in African Americans. Clin Pharmacol Therapeut 2010; 87: 459-464.
- 13 Scott S, Edelmann L, Kornreich R. et al. Warfarin Pharmacogenetics: CYP2C9 and VKORC1 Genotypes Predict Different Sensitivity and Resistance Frequencies in the Ashkenazi and Sephardi Jewish Populations. AJHG 2008; 82: 495-500.
- 14 Rost S, Fregin A, Koch D. et al. Compound heterozygous mutations in the gammaglutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 2004; 126: 546-549.
- 15 Shikata E, Ieiri I, Ishiguro S. et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (vitamin K-dependent protein-Factors II VII, IX, and X, proteins S and C, and {gamma}-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 2004; 103: 2630-2635.
- 16 Gage BF, Eby CS. The genetics of vitamin K antagonists. Pharmacogenomics J 2004; 4: 224-225.
- 17 Vanakker OM, Martin L, Gheduzzi D. et al. Pseudoxanthoma elasticum-like phenotype with cutis laxa and multiple coagulation factor deficiency represents a separate genetic entity. J Invest Dermatol 2007; 127: 581-587.
- 18 Zhu A, Sun H, Raymond Jr RM. et al. Fatal hemorrhage in mice lacking gammaglutamyl carboxylase. Blood 2007; 109: 5270-5275.
- 19 Rieder MJ, Reiner AP, Rettie AE. Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J Thromb Haemost 2007; 5: 2227-2234.
- 20 Wang TL, Li HL, Tjong WY. et al. Genetic factors contribute to patient-specific warfarin dose for Han Chinese. Clin Chim Acta 2008; 396: 76-79.
- 21 Lubitz SA, Scott SA, Rothlauf EB. et al. Comparative performance of gene-based warfarin dosing algorithms in a multiethnic population. J Thromb Haemost 2010; 8: 1018-1026.
- 22 Lenzini PA, Grice GR, Milligan PE. et al. Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedic patients. J Thromb Haemost 2008; 6: 1655-1662.
- 23 Ridker PM, Goldhaber SZ, Danielson E. et al. Long-term, low-intensity warfarin therapy for the prevention of recurrent venous thromboembolism. N Engl J Med 2003; 348: 1425-1434.
- 24 Marsh S, King CR, Garsa AA. et al. Pyrosequencing of clinically relevant polymorphisms. Methods Mol Biol 2005; 311: 97-114.
- 25 King CR, Porche-Sorbet RM, Gage BF. et al. Performance of commercial platforms for rapid genotyping of polymorphisms affecting warfarin dose. Am J Clin Pathol 2008; 129: 876-883.
- 26 Herman D, Peternel P, Stegnar M. et al. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost 2006; 95: 782-787.
- 27 Takeuchi F, McGinnis R, Bourgeois S. et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009; 5: e1000433.
- 28 Wadelius M, Chen LY, Lindh JD. et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 2009; 113: 784-792.
- 29 Lee MT, Chen CH, Chou CH. et al. Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics 2009; 10: 1905-1913.
- 30 Chen LY, Eriksson N, Gwilliam R. et al. Gamma-glutamyl carboxylase (GGCX) microsatellite and warfarin dosing. Blood 2005; 106: 3673-3674.
- 31 Kimura R, Miyashita K, Kokubo Y. et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 2007; 120: 181-186.
- 32 Loebstein R, Vecsler M, Kurnik D. et al. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytoch-rome P450 2C9. Clin Pharmacol Therapeut 2005; 77: 365-372.
- 33 Vecsler M, Loebstein R, Almog S. et al. Combined genetic profiles of components and regulators of the vitamin K-dependent gamma-carboxylation system affect individual sensitivity to warfarin. Thromb Haemost 2006; 95: 205-211.
- 34 Voora D, Eby C, Linder MW. et al. Prospective dosing of warfarin based on cytoch-rome P-450 2C9 genotype. Thromb Haemost 2005; 93: 700-705.
- 35 Crowther MA, Ginsberg JB, Kearon C. et al. A randomized trial comparing 5-mg and 10-mg warfarin loading doses. Arch Intern Med 1999; 159: 46-48.
- 36 Gage BF, Eby C, Milligan PE. et al. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost 2004; 91: 87-94.
- 37 Siguret V, Gouin I, Debray M. et al. Initiation of warfarin therapy in elderly medical inpatients: a safe and accurate regimen. Am J Med 2005; 118: 137-142.
- 38 Fennerty A, Dolben J, Thomas P. et al. Flexible induction dose regimen for warfarin and prediction of maintenance dose. Br Med J 1984; 288: 1268-1270.
- 39 Eckman MH, Rosand J, Greenberg SM. et al. Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann Intern Med 2009; 150: 73-83.
- 40 Knowlton CH, Thomas OV, Williamson A. et al. Establishing community pharmacy-based anticoagulation education and monitoring programs. J Am Pharm Assoc 1999; 39: 368-374.