Thromb Haemost 2013; 109(06): 980-990
DOI: 10.1160/TH12-11-0819
Review Article
Schattauer GmbH

CD4+ T cells in atherosclerosis: Regulation by platelets

Nailin Li
1   Karolinska Institute, Department of Medicine-Solna, Clinical Pharmacology Unit, Karolinska University Hospital-Solna, Stockholm, Sweden
› Author Affiliations
Further Information

Publication History

Received: 14 November 2012

Accepted after minor revision: 28 January 2013

Publication Date:
22 November 2017 (online)

Summary

Atherosclerosis is an inflammatory and thrombotic disease, in which both CD4+ T cells and platelets play important roles throughout all stages of atherogenesis. CD4+ T cells are the most abundant T cells present in atherosclerotic lesions. They are primarily seen as type 1 T helper (Th1) cells, while the other CD4+ T cell subsets Th2, Th17, and regulatory T (Treg) cells are also found in the lesions with lower frequencies. CD4+ T effector cells release various cytokines, which exert paracrine or autocrine effects among different CD4+ T cell subsets and other lesional cells and subsequently modulate inflammatory processes in the lesions. Platelets are instrumental in thrombosis and haemostasis, but also play important regulatory roles in immune response, inflammation, and angiogenesis. The present review summarises the current knowledge and/or understanding on how platelets regulate recruitment, activation, differentiation, and cytokine production of different CD4+ T cell subsets, as well as impacts of the platelet-CD4+ T cell interactions on atherogenesis. The research perspectives of platelet-CD4+ T cell interaction in atherosclerosis are also discussed.

 
  • References

  • 1 Ross R, Glomset JA. The pathogenesis of atherosclerosis (first of two parts). N Engl J Med 1976; 295: 369-377.
  • 2 Ross R. Atherosclerosis-an inflammatory disease. N Eng J Med 1999; 340: 115-126.
  • 3 Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685-1695.
  • 4 Harker LA, Marzec UM, Kelly AB. et al. Clopidogrel inhibition of stent, graft, and vascular thrombogenesis with antithrombotic enhancement by aspirin in nonhuman primates. Circulation 1998; 98: 2461-2469.
  • 5 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115: 3378-3384.
  • 6 Lievens D, von Hundelshausen P. Platelets in atherosclerosis. Thromb Haemost 2011; 106: 827-838.
  • 7 Schaffner T, Taylor K, Bartucci EJ. et al. Arterial foam cells with distinctive immunomorphologic and histochemical features of macrophages. Am J Pathol 1980; 100: 57-80.
  • 8 Jonasson L, Holm J, Skalli O. et al. Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest 1985; 76: 125-131.
  • 9 Jonasson L, Holm J, Skalli O. et al. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986; 06: 131-138.
  • 10 Hansson GK. Immune Mechanisms in Atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 21: 1876-1890.
  • 11 Hansson GK, Libby P, Schonbeck U. et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 2002; 91: 281-291.
  • 12 Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009; 54: 2129-2138.
  • 13 Frostegard J, Ulfgren AK, Nyberg P. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999; 145: 33-43.
  • 14 Zhou X, Nicoletti A, Elhage R. et al. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000; 102: 2919-2922.
  • 15 Zhou X, Robertson AK, Rudling M. et al. Lesion development and response to immunisation reveal a complex role for CD4 in atherosclerosis. Circ Res 2005; 96: 427-434.
  • 16 Gao Q, Jiang Y, Ma T. et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 2010; 185: 5820-5827.
  • 17 Tellides G, Tereb DA, Kirkiles-Smith NC. et al. Interferon-gamma elicits arteriosclerosis in the absence of leukocytes. Nature 2000; 403: 207-211.
  • 18 Laurat E, Poirier B, Tupin E. et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 2001; 104: 197-202.
  • 19 Buono C, Binder CJ, Stavrakis G. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA 2005; 102: 1596-1601.
  • 20 Gupta S, Pablo AM, Jiang X. et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 1997; 99: 2752-2761.
  • 21 Schulte S, Sukhova GK, Libby P. Genetically programmed biases in Th1 and Th2 immune responses modulate atherogenesis. Am J Pathol 2008; 172: 1500-1508.
  • 22 Binder CJ, Hartvigsen K, Chang MK. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 2004; 114: 427-437.
  • 23 King VL, Cassis LA, Daugherty A. Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. Am J Pathol 2007; 171: 2040-2047.
  • 24 King VL, Szilvassy SJ, Daugherty A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler Thromb Vasc Biol 2002; 22: 456-461.
  • 25 Davenport P, Tipping PG. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 2003; 163: 1117-1125.
  • 26 Bettelli E, Korn T, Oukka M. et al. Induction and effector functions of T(H)17 cells. Nature 2008; 453: 1051-1057.
  • 27 Cheng X, Yu X, Ding YJ. et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol 2008; 127: 89-97.
  • 28 van Es T, van Puijvelde GH, Ramos OH. et al. Attenuated atherosclerosis upon IL-17R signalling disruption in LDLr deficient mice. Biochem Biophys Res Commun 2009; 388: 261-265.
  • 29 Smith E, Stark MA, Zarbock A. et al. IL-17A inhibits the expansion of IL-17A-producing T cells in mice through “short-loop” inhibition via IL-17 receptor. J Immunol 2008; 181: 1357-1364.
  • 30 Taleb S, Romain M, Ramkhelawon B. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 2009; 206: 2067-2077.
  • 31 de Boer OJ, van der Meer JJ, Teeling P. et al. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS One 2007; 02: e779.
  • 32 Heller EA, Liu E, Tager AM. et al. Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation 2006; 113: 2301-2312.
  • 33 Mor A, Luboshits G, Planer D. et al. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur Heart J 2006; 27: 2530-2537.
  • 34 Ait-Oufella H, Salomon BL, Potteaux S. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006; 12: 178-180.
  • 35 Mallat Z, Besnard S, Duriez M. et al. Protective role of interleukin-10 in atherosclerosis. Circ Res 1999; 85: e17-e24.
  • 36 Pinderski LJ, Fischbein MP, Subbanagounder G. et al. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient Mice by altering lymphocyte and macrophage phenotypes. Circ Res 2002; 90: 1064-1071.
  • 37 Mallat Z, Gojova A, Marchiol-Fournigault C. et al. Inhibition of transforming growth factor-beta signalling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 2001; 89: 930-934.
  • 38 Robertson AK, Rudling M, Zhou X. et al. Disruption of TGF-beta signalling in T cells accelerates atherosclerosis. J Clin Invest 2003; 112: 1342-1350.
  • 39 Sasaki N, Yamashita T, Takeda M. et al. Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation 2009; 120: 1996-2005.
  • 40 Duguid JB. Thrombosis as a factor in the pathogenesis of aortic atherosclerosis. J Pathol Bacteriol 1948; 60: 57-61.
  • 41 Theilmeier G, Michiels C, Spaepen E. et al. Endothelial von Willebrand factor recruits platelets to atherosclerosis- prone sites in response to hypercholesterolemia. Blood 2002; 99: 4486-4493.
  • 42 Massberg S, Brand K, Gruner S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196: 887-896.
  • 43 Theilmeier G, Lenaerts T, Remacle C. et al. Circulating activated platelets assist THP-1 monocytoid/endothelial cell interaction under shear stress. Blood 1999; 94: 2725-2734.
  • 44 Dong ZM, Brown AA, Wagner DD. Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 2000; 101: 2290-2295.
  • 45 Wagner DD. New links between inflammation and thrombosis. Arterioscler Thromb Vasc Biol 2005; 25: 1321-1324.
  • 46 Hu H, Zhu L, Huang Z. et al. Platelets enhance lymphocyte adhesion and infiltration into arterial thrombus. Thromb Haemost 2010; 104: 1184-1192.
  • 47 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 09: 61-67.
  • 48 Massberg S, Schurzinger K, Lorenz M. et al. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischaemia: an in vivo study in mice lacking glycoprotein IIb. Circulation 2005; 112: 1180-1188.
  • 49 Dong ZM, Chapman SM, Brown AA. et al. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest 1998; 102: 145-152.
  • 50 von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100: 27-40.
  • 51 Koenen RR, Weber C. Platelet-derived chemokines in vascular remodeling and atherosclerosis. Semin Thromb Hemost 2010; 36: 163-169.
  • 52 Koyama H, Maeno T, Fukumoto S. et al. Platelet P-selectin expression is associated with atherosclerotic wall thickness in carotid artery in humans. Circulation 2003; 108: 524-529.
  • 53 Stellos K, Bigalke B, Stakos D. et al. Platelet-bound P-selectin expression in patients with coronary artery disease: impact on clinical presentation and myocardial necrosis, and effect of diabetes mellitus and anti-platelet medication. J Thromb Haemost 2010; 08: 205-207.
  • 54 Fateh-Moghadam S, Li Z, Ersel S. et al. Platelet degranulation is associated with progression of intima-media thickness of the common carotid artery in patients with diabetes mellitus type 2. Arterioscler Thromb Vasc Biol 2005; 25: 1299-1303.
  • 55 Kuijper PH, Gallardo TH, Lammers JW. et al. Platelet and fibrin deposition at the damaged vessel wall: cooperative substrates for neutrophil adhesion under flow conditions. Blood 1997; 89: 166-175.
  • 56 Kuijper PHM, Gallardo Torres HI, van der Linden JAM. et al. Platelet-dependent primary hemostasis promotes selectin- and integrin-mediated neutrophil adhesion to damaged endothelium under flow conditions. Blood 1996; 87: 3271-3281.
  • 57 Kuijper PH, Gallardo TH, Houben LA. et al. P-selectin and MAC-1 mediate monocyte rolling and adhesion to ECM-bound platelets under flow conditions. J Leukocyte Biol 1998; 64: 467-473.
  • 58 Lalor P, Nash GB. Adhesion of flowing leucocytes to immobilized platelets. Br J Haematol 1995; 89: 725-732.
  • 59 Kirton CM, Nash GB. Activated platelets adherent to an intact endothelial cell monolayer bind flowing neutrophils and enable them to transfer to the endothelial surface. J Lab Clin Med 2000; 136: 303-313.
  • 60 Butler LM, Metson-Scott T, Felix J. et al. Sequential adhesion of platelets and leukocytes from flowing whole blood onto a collagen-coated surface: requirement for a GpVI-binding site in collagen. Thromb Haemost 2007; 97: 814-821.
  • 61 Kirchhofer D, Riederer MA, Baumgartner HR. Specific accumulation of circulating monocytes and polymorphonuclear leukocytes on platelet thrombi in a vascular injury model. Blood 1997; 89: 1270-1278.
  • 62 Diacovo TG, Puri KD, Warnock RA. et al. Platelet-mediated lymphocyte delivery to high endothelial venules. Science 1996; 273: 252-255.
  • 63 Diacovo TG, Catalina MD, Siegelman MH. et al. Circulating activated platelets reconstitute lymphocyte homing and immunity in L-selectin-deficient mice. J Exp Med 1998; 187: 197-204.
  • 64 Solpov A, Shenkman B, Vitkovsky Y. et al. Platelets enhance CD4+ lymphocyte adhesion to extracellular matrix under flow conditions: role of platelet aggregation, integrins, and non-integrin receptors. Thromb Haemost 2006; 95: 815-821.
  • 65 Schulz C, Schafer A, Stolla M. et al. Chemokine fractalkine mediates leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role for P-selectin expressed on activated platelets. Circulation 2007; 116: 764-773.
  • 66 Spectre G, Zhu L, Ersoy M. et al. Platelets selectively enhance lymphocyte adhesion on subendothelial matrix under arterial flow conditions. Thromb Haemost 2012; 108: 328-337.
  • 67 Eriksson EE. Intravital microscopy on atherosclerosis in apolipoprotein e-deficient mice establishes microvessels as major entry pathways for leukocytes to advanced lesions. Circulation 2011; 124: 2129-2138.
  • 68 Yoshizaki A, Yanaba K, Iwata Y. et al. Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model. J Immunol 2010; 185: 2502-2515.
  • 69 Taub DD, Turcovski-Corrales SM, Key ML. et al. Chemokines and T lymphocyte activation: I. Beta chemokines costimulate human T lymphocyte activation in vitro. J Immunol 1996; 156: 2095-2103.
  • 70 Bacon KB, Premack BA, Gardner P. et al. Activation of dual T cell signalling pathways by the chemokine RANTES. Science 1995; 269: 1727-1730.
  • 71 Acres RB, Lamb JR, Feldman M. Effects of platelet-derived growth factor and epidermal growth factor on antigen-induced proliferation of human T-cell lines. Immunology 1985; 54: 9-16.
  • 72 Kabashima K, Murata T, Tanaka H. et al. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat Immunol 2003; 04: 694-701.
  • 73 Thomas DW, Rocha PN, Nataraj C. et al. Proinflammatory actions of thromboxane receptors to enhance cellular immune responses. J Immunol 2003; 171: 6389-6395.
  • 74 Vivier E, Deryckx S, Wang JL. et al. Immunoregulatory functions of paf-acether. VI. Inhibition of T cell activation via CD3 and potentiation of T cell activation via CD2. Int Immunol 1990; 02: 545-553.
  • 75 Ayoub IA, Yang TJ. Growth regulatory effects of transforming growth factor-beta 1 and interleukin-2 on IL-2 dependent CD4+T lymphoblastoid cell line. Immunol Invest 1996; 25: 129-151.
  • 76 Fleischer J, Grage-Griebenow E, Kasper B. et al. Platelet factor 4 inhibits proliferation and cytokine release of activated human T cells. J Immunol 2002; 169: 770-777.
  • 77 Liu CY, Battaglia M, Lee SH. et al. Platelet factor 4 differentially modulates CD4+CD25+ (regulatory) versus CD4+CD25- (nonregulatory) T cells. J Immunol 2005; 174: 2680-2686.
  • 78 Gerdes N, Zhu L, Ersay M. et al. Platelets regulate CD4+ T cell differentiation via multiple chemokines in humans. Thromb Haemost 2011; 106: 353-362.
  • 79 Lutgens E, Gijbels M, Smook M. et al. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 2002; 22: 975-982.
  • 80 Gojova A, Brun V, Esposito B. et al. Specific abrogation of transforming growth factor-beta signalling in T cells alters atherosclerotic lesion size and composition in mice. Blood 2003; 102: 4052-4058.
  • 81 Zhou L, Lopes JE, Chong MM. et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008; 453: 236-240.
  • 82 Lievens D, Habets KL, Robertson AK. et al. Abrogated transforming growth factor beta receptor II (TGFbetaRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis. Eur Heart J. 2012 epub ahead of print
  • 83 Calabresse C, Nguer MC, Pellegrini O. et al. Induction of high-affinity paf receptor expression during T cell activation. Eur J Immunol 1992; 22: 1349-1355.
  • 84 Frostegard J, Huang YH, Ronnelid J. et al. Platelet-activating factor and oxidized LDL induce immune activation by a common mechanism. Arterioscler Thromb Vasc Biol 1997; 17: 963-968.
  • 85 Prescott SM, Zimmerman GA, Stafforini DM. et al. Platelet-activating factor and related lipid mediators. Annu Rev Biochem 2000; 69: 419-445.
  • 86 Masini E, Di Bello MG, Raspanti S. et al. The role of histamine in platelet aggregation by physiological and immunological stimuli. Inflamm Res 1998; 47: 211-220.
  • 87 Jutel M, Klunker S, Akdis M. et al. Histamine upregulates Th1 and downregulates Th2 responses due to different patterns of surface histamine 1 and 2 receptor expression. International archives of allergy and immunology 2001; 124: 190-192.
  • 88 Li N, Wallén NH, Ladjevardi M. et al. Effects of serotonin on platelet activation in whole blood. Blood Coagulation And Fibrinolysis 1997; 08: 517-523.
  • 89 Ameisen JC, Meade R, Askenase PW. A new interpretation of the involvement of serotonin in delayed-type hypersensitivity. Serotonin-2 receptor antagonists inhibit contact sensitivity by an effect on T cells. J Immunol 1989; 142: 3171-3179.
  • 90 Inoue M, Okazaki T, Kitazono T. et al. Regulation of antigen-specific CTL and Th1 cell activation through 5-Hydroxytryptamine 2A receptor. Int Immunopharmacol 2011; 11: 67-73.
  • 91 Geba GP, Ptak W, Anderson GM. et al. Delayed-type hypersensitivity in mast cell-deficient mice: dependence on platelets for expression of contact sensitivity. J Immunol 1996; 157: 557-565.
  • 92 Lindemann S, Tolley ND, Dixon DA. et al. Activated platelets mediate inflammatory signalling by regulated interleukin 1beta synthesis. J Cell Biol 2001; 154: 485-490.
  • 93 Vieira-de-Abreu A, Campbell RA, Weyrich AS. et al. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 2012; 34: 5-30.
  • 94 Hebel K, Rudolph M, Kosak B. et al. IL-1beta and TGF-beta act antagonistically in induction and differentially in propagation of human proinflammatory precursor CD4+ T cells. J Immunol 2011; 187: 5627-5635.
  • 95 Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A. et al. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 08: 942-949.
  • 96 Shaw MH, Kamada N, Kim YG. et al. Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J Exp Med 2012; 209: 251-258.
  • 97 Drolet AM, Thivierge M, Turcotte S. et al. Platelet-activating factor induces Th17 cell differentiation. Mediators Inflamm 2011; 2011: 913802.
  • 98 Singh TP, Huettner B, Koefeler H. et al. Platelet-activating factor blockade inhibits the T-helper type 17 cell pathway and suppresses psoriasis-like skin disease in K5.hTGF-beta1 transgenic mice. Am J Pathol 2011; 178: 699-708.
  • 99 Huang YH, Schafer-Elinder L, Owman H. et al. Induction of IL-4 by platelet-activating factor. Clin Exp Immunol 1996; 106: 143-148.
  • 100 Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive immunity. Cell Immunol 2005; 238: 1-9.
  • 101 Elzey BD, Grant JF, Sinn HW. et al. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J Leukoc Biol 2005; 78: 80-84.
  • 102 Elzey BD, Tian J, Jensen RJ. et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 2003; 19: 9-19.
  • 103 Danese S, Katz JA, Saibeni S. et al. Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of inflammatory bowel disease patients. Gut 2003; 52: 1435-1441.
  • 104 Hansson GK. The B cell: a good guy in vascular disease?. Arterioscler Thromb Vasc Biol 2002; 22: 523-524.
  • 105 Mallat Z, Gojova A, Brun V. et al. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knock-out mice. Circulation 2003; 108: 1232-1237.
  • 106 Ganesh BB, Bhattacharya P, Gopisetty A. et al. IL-1beta promotes TGF-beta1 and IL-2 dependent Foxp3 expression in regulatory T cells. PLoS One 2011; 06: e21949.
  • 107 Maganto-Garcia E, Tarrio ML, Grabie N. et al. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 2011; 124: 185-195.
  • 108 Caligiuri G, Nicoletti A. Tregs and human atherothrombotic diseases: toward a clinical application?. Arterioscler Thromb Vasc Biol 2010; 30: 1679-1681.
  • 109 Lievens D, Zernecke A, Seijkens T. et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116: 4317-4327.
  • 110 Andersson PO, Stockelberg D, Jacobsson S. et al. A transforming growth factor-beta1-mediated bystander immune suppression could be associated with remission of chronic idiopathic thrombocytopenic purpura. Ann Hematol 2000; 79: 507-513.
  • 111 Alcaide P, Maganto-Garcia E, Newton G. et al. Difference in Th1 and Th17 lymphocyte adhesion to endothelium. J Immunol 2012; 188: 1421-1430.
  • 112 Konstantopoulos K, Neelamegham S, Burns AR. et al. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin. Circulation 1998; 98: 873-882.
  • 113 Larsen E, Palabrica T, Sajer S. et al. PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell 1990; 63: 467-474.
  • 114 Spangenberg P, Redlich H, Bergmann I. et al. The platelet glycoprotein IIb/IIIa complex is involved in the adhesion of activated platelets to leukocytes. Thromb Haemost 1993; 70: 514-521.
  • 115 André P, Prasad KS, Denis CV. et al. CD40L stabilizes arterial thrombi by a beta3 integrin--dependent mechanism. Nat Med 2002; 08: 247-252.
  • 116 Simon DI, Chen Z, Xu H. et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192: 193-204.
  • 117 Santoso S, Sachs UJ, Kroll H. et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 2002; 196: 679-691.
  • 118 Li N, Ji Q, Hjemdahl P. Platelet-lymphocyte conjugation differs between lymphocyte subpopulations. J Thromb Haemost 2006; 04: 874-881.
  • 119 Lichtman AH, Chin J, Schmidt JA. et al. Role of interleukin 1 in the activation of T lymphocytes. Proc Natl Acad Sci U S A 1988; 85: 9699-9703.
  • 120 Miconnet I, Pantaleo G. A soluble hexameric form of CD40 ligand activates human dendritic cells and augments memory T cell response. Vaccine 2008; 26: 4006-4014.
  • 121 Jutel M, Watanabe T, Klunker S. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001; 413: 420-425.
  • 122 Steffens S, Burger F, Pelli G. et al. Short-term treatment with anti-CD3 antibody reduces the development and progression of atherosclerosis in mice. Circulation 2006; 114: 1977-1984.