Thromb Haemost 2014; 111(01): 154-164
DOI: 10.1160/TH13-04-0313
Animal Models
Schattauer GmbH

Pharmacological modulation of procoagulant microparticles improves haemodynamic dysfunction during septic shock in rats

Julie Boisramé-Helms*
1   Service de Réanimation Médicale, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
2   EA 3072, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Université de Strasbourg, Strasbourg, France
,
Xavier Delabranche*
1   Service de Réanimation Médicale, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
2   EA 3072, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Université de Strasbourg, Strasbourg, France
,
Su-Emmanuelle Degirmenci
2   EA 3072, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Université de Strasbourg, Strasbourg, France
,
Fatiha Zobairi
3   EA 7293, Stress Vasculaire et Tissulaire en Transplantation, Faculté de Médecine, Université de Strasbourg, France
,
Asael Berger
1   Service de Réanimation Médicale, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
2   EA 3072, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Université de Strasbourg, Strasbourg, France
,
Grégory Meyer
4   Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
,
Mélanie Burban
4   Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
,
Hadj-Ahmed Mostefai
1   Service de Réanimation Médicale, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
,
Bruno Levy
5   Groupe CHOC, Equipe AVENIR Inserm, Faculté de Médecine, Université de Nancy, Vandoeuvre les Nancy, Nancy, France
,
Florence Toti
3   EA 7293, Stress Vasculaire et Tissulaire en Transplantation, Faculté de Médecine, Université de Strasbourg, France
4   Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
,
Ferhat Meziani
1   Service de Réanimation Médicale, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
2   EA 3072, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Université de Strasbourg, Strasbourg, France
› Author Affiliations
Financial support: This work has been supported by the French Society of Intensive Care (Société de Réanimation de Langue Française, SRLF) and the Association for Research Development in Intensive Care (Association pour le Développement de la Recherche En Réanimation, ADRER).
Further Information

Publication History

Received: 17 April 2013

Accepted after major revision: 04 September 2013

Publication Date:
21 November 2017 (online)

Summary

Circulating microparticles play a pro-inflammatory and procoagulant detrimental role in the vascular dysfunction of septic shock. It was the objective of this study to investigate mechanisms by which a pharmacological modulation of microparticles could affect vascular dysfunction in a rat model of septic shock. Septic or sham rats were treated by activated protein C (aPC) and resuscitated during 4 hours. Their microparticles were harvested and inoculated to another set of healthy recipient rats. Haemodynamic parameters were monitored, circulating total procoagulant microparticles assessed by prothrombinase assay, and their cell origin characterised. Mesenteric resistance arteries, aorta and heart were harvested for western blotting analysis. We found that a) the amount and phenotype of circulating microparticles were altered in septic rats with an enhanced endothelial, leucocyte and platelet contribution; b) aPC treatment significantly reduced the generation of leucocyte microparticles and norepinephrine requirements to reach the mean arterial pressure target in septic rats; c) Microparticles from untreated septic rats, but not from aPC-treated ones, significantly reduced the healthy recipients’ mean arterial pressure; d) Microparticle thromboxane content and aPC activity were significantly increased in aPC-treated septic rats. In inoculated naïve recipients, microparticles from aPC-treated septic rats prompted reduced NF-κB and cyclooxygenase-2 arterial activation, blunted the generation of pro-inflammatory iNOS and secondarily increased platelet and endothelial microparticles. In conclusion, in this septic shock model, increased circulating levels of procoagulant microparticles led to negative haemodynamic outcomes. Pharmacological treatment by aPC modified the cell origin and levels of circulating microparticles, thereby limiting vascular inflammation and favouring haemodynamic improvement.

* The two first authors contributed equally to this work.


 
  • References

  • 1 Annane D. et al. Septic shock. Lancet 2005; 365: 63-78.
  • 2 Boisramé-Helms J. et al. Endothelial dysfunction in sepsis. Curr Vasc Pharmacol 2013; 11: 150-160.
  • 3 Fourrier F. Severe sepsis, coagulation, and fibrinolysis: dead end or one way?. Crit Care Med 2012; 40: 2704-2708.
  • 4 Morel O. et al. Microparticles: a critical component in the nexus between inflammation, immunity, and thrombosis. Semin Immunopathol 2011; 33: 469-486.
  • 5 Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 2010; 107: 1047-1057.
  • 6 Morel O. et al. Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol 2004; 11: 156-164.
  • 7 Meziani F. et al. Bench-to-bedside review: circulating microparticles-- a new player in sepsis?. Crit Care 2010; 14: 236.
  • 8 Nieuwland R. et al. Cellular origin and procoagulant properties of micropar-ticles in meningococcal sepsis. Blood 2000; 95: 930-935.
  • 9 Mortaza S. et al. Detrimental hemodynamic and inflammatory effects of micro-particles originating from septic rats. Crit Care Med 2009; 37: 2045-2050.
  • 10 Berckmans RJ. et al. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 2001; 85: 639-646.
  • 11 Rautou PE. et al. Microparticles, vascular function, and atherothrombosis. Circ Res 2011; 109: 593-606.
  • 12 Egorina EM. et al. Granulocytes do not express but acquire monocyte-derived tissue factor in whole blood: evidence for a direct transfer. Blood 2008; 111: 1208-1216.
  • 13 Van Der Meijden PE. et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XlIa. J Thromb Haemost 2012; 10: 1355-1362.
  • 14 Mosnier LO. et al. The cytoprotective protein C pathway. Blood 2007; 109: 3161-3172.
  • 15 Montes R. et al. Activated protein C: reasons to believe. J Thromb Haemost 2012; 10: 1733-1735.
  • 16 Sennoun N. et al. Recombinant human activated protein C improves endotox-emia-induced endothelial dysfunction: a blood-free model in isolated mouse arteries. Am J Physiol Heart Circ Physiol 2009; 297: H277-282.
  • 17 Sennoun N. et al. Activated protein C improves lipopolysaccharide-induced cardiovascular dysfunction by decreasing tissular inflammation and oxidative stress. Crit Care Med 2009; 37: 246-255.
  • 18 Dhainaut JF. et al. Treatment effects of drotrecogin alfa (activated) in patients with severe sepsis with or without overt disseminated intravascular coagulation. Journal of thrombosis and haemostasis : JTH 2004; 02: 1924-1933.
  • 19 Kerschen EJ. et al. Endotoxemia and sepsis mortality reduction by non-anticoagulant activated protein C. J Exp Med 2007; 204: 2439-2448.
  • 20 Mosnier LO. et al. Hyperantithrombotic, noncytoprotective Glu149Ala-acti-vated protein C mutant. Blood 2009; 113: 5970-5978.
  • 21 Russo A. et al. Proteases display biased agonism at protease-activated receptors: location matters!. Mol Interv 2009; 09: 87-96.
  • 22 Rezaie AR. The occupancy of endothelial protein C receptor by its ligand modulates the par-1 dependent signaling specificity of coagulation proteases. IUBMB Life 2011; 63: 390-396.
  • 23 Weiler H. Multiple receptor-mediated functions of activated protein C. Hamos-taseologie 2011; 31: 185-195.
  • 24 Mosnier LO. et al. Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood 2012; 120: 5237-5246.
  • 25 Perez-Casal M. et al. Activated protein C induces the release of microparticle-associated endothelial protein C receptor. Blood 2005; 105: 1515-1522.
  • 26 Perez-Casal M. et al. The clinical and functional relevance of microparticles induced by activated protein C treatment in sepsis. Crit Care 2011; 15: R195
  • 27 Hubbard WJ. et al. Cecal ligation and puncture. Shock 2005; 24 (Suppl. 01) 52-57.
  • 28 Hugel B. et al. Measuring circulating cell-derived microparticles. J Thromb Hae-most 2004; 02: 1846-1847.
  • 29 Boulanger CM. et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 2001; 104: 2649-2652.
  • 30 Pfister SL. Role of platelet microparticles in the production of thromboxane by rabbit pulmonary artery. Hypertension 2004; 43: 428-433.
  • 31 Tesse A. et al. Upregulation of proinflammatory proteins through NF-kappaB pathway by shed membrane microparticles results in vascular hyporeactivity. Arterioscler Thromb Vasc Biol 2005; 25: 2522-2527.
  • 32 Dignat-George F. et al. Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb Hae-most 2004; 91: 667-673.
  • 33 Joop K. et al. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost 2001; 85: 810-820.
  • 34 Delabranche X. et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 2013 epub ahead of print.
  • 35 Brodsky SV. et al. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol 2004; 286: H1910-1915.
  • 36 Densmore JC. et al. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock 2006; 26: 464-471.
  • 37 Soriano AO. et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med 2005; 33: 2540-2546.
  • 38 Janiszewski M. et al. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: A novel vascular redox pathway. Critical Care Med 2004; 32: 818-825.
  • 39 Sen P. et al. Factor VIIa bound to endothelial cell protein C receptor activates protease activated receptor-1 and mediates cell signaling and barrier protection. Blood 2011; 117: 3199-3208.
  • 40 Bouwens EA. et al. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 2013; 11 (Suppl. 01) 242-253.
  • 41 Bae JS. et al. Lipid raft localization regulates the cleavage specificity of protease activated receptor 1 in endothelial cells. J Thromb Haemost 2008; 6: 954-961.
  • 42 Ghosh S. et al. Endothelial cell protein C receptor acts as a cellular receptor for factor Vila on endothelium. J Biol Chem 2007; 282: 11849-11857.
  • 43 Bhattacharya A, Cohen ML. Vascular contraction and relaxation to thrombin and trypsin: thrombomodulin preferentially attenuates thrombin-induced contraction. J Pharmacol Exp Ther 2000; 295: 284-290.
  • 44 Mostefai HA. et al. Circulating microparticles from patients with septic shock exert protective role in vascular function. Am J Respir Crit Care Med 2008; 178: 1148-1155.
  • 45 Barry OP. et al. Arachidonic acid in platelet microparticles up-regulates cyclo-oxygenase-2-dependent prostaglandin formation via a protein kinase C/mi-togen-activated protein kinase-dependent pathway. J Biol Chem 1999; 274: 7545-7556.
  • 46 Ranieri VM. et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 2012; 366: 2055-2064.