Thromb Haemost 2017; 117(01): 07-18
DOI: 10.1160/TH16-08-0593
Review Article
Schattauer GmbH

Pathophysiological relevance of macrophage subsets in atherogenesis

Luca Liberale
1   First Clinic of Internal Medicine Department of Internal Medicine, University of Genoa, Genoa, Italy
,
Franco Dallegri
1   First Clinic of Internal Medicine Department of Internal Medicine, University of Genoa, Genoa, Italy
2   First Clinic of Internal Medicine, IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
,
Fabrizio Montecucco
1   First Clinic of Internal Medicine Department of Internal Medicine, University of Genoa, Genoa, Italy
2   First Clinic of Internal Medicine, IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
3   Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
,
Federico Carbone
1   First Clinic of Internal Medicine Department of Internal Medicine, University of Genoa, Genoa, Italy
› Author Affiliations
Financial support: This study was supported by European Commission (FP7-INNOVATION I HEALTH-F2–2013–602114; Athero-B-Cell: Targeting and exploiting B cell function for treatment in cardiovascular disease). This work was supported by a Swiss National Science Foundation Grant to Dr. F. Montecucco (#310030_152639/1).
Further Information

Publication History

Received: 01 August 2016

Accepted after minor revision: 12 September 2016

Publication Date:
01 December 2017 (online)

Summary

Macrophages are highly heterogeneous and plastic cells. They were shown to play a critical role in all stages of atherogenesis, from the initiation to the necrotic core formation and plaque rupture. Lesional macrophages primarily derive from blood monocyte, but local macrophage proliferation as well as differentiation from smooth muscle cells have also been described. Within atherosclerotic plaques, macrophages rapidly respond to changes in the microenvironment, shifting between pro- (M1) or anti-inflammatory (M2) functional phenotypes. Furthermore, different stimuli have been associated with differentiation of newly discovered M2 subtypes: IL-4/IL-13 (M2a), immunecomplex (M2b), IL-10/glucocorticoids (M2c), and adenosine receptor agonist (M2d). More recently, additional intraplaque macrophage phenotypes were also recognized in response to CXCL4 (M4), oxidized phospholipids (Mox), haemoglobin/haptoglobin complexes (HAmac/M(Hb)), and heme (Mhem). Such macrophage polarization was described as a progression among multiple phenotypes, which reflect the activity of different transcriptional factors and the cross-talk between intracellular signalling. Finally, the distribution of macrophage subsets within different plaque areas was markedly associated with cardiovascular (CV) vulnerability. The aim of this review is to update the current knowledge on the role of macrophage subsets in atherogenesis. In addition, the molecular mechanisms underlying macrophage phenotypic shift will be summarised and discussed. Finally, the role of intraplaque macrophages as predictors of CV events and the therapeutic potential of these cells will be discussed.

 
  • References

  • 1 Finn AV. et al. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 2010; 30: 1282-1292.
  • 2 Montecucco F. et al. Pathophysiology of ST-segment elevation myocardial infarction: novel mechanisms and treatments. Eur Heart J 2016; 37: 1268-1283.
  • 3 Leitinger N, Schulman IG. Phenotypic polarisation of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33: 1120-1126.
  • 4 Robbins CS. et al. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 2012; 125: 364-374.
  • 5 Robbins CS. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 2013; 19: 1166-1172.
  • 6 Allahverdian S. et al. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 2014; 129: 1551-1559.
  • 7 Feil S. et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res 2014; 115: 662-667.
  • 8 Mantovani A. et al. Macrophage diversity and polarisation in atherosclerosis: a question of balance. Arterioscler Thromb Vasc Biol 2009; 29: 1419-1423.
  • 9 Geissmann F. et al. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19: 71-82.
  • 10 Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell Immunol 2014; 289: 135-139.
  • 11 Auffray C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007; 317: 666-670.
  • 12 Swirski FK. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007; 117: 195-205.
  • 13 Tacke F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007; 117: 185-194.
  • 14 Potteaux S. et al. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe−/− mice during disease regression. J Clin Invest 2011; 121: 2025-2036.
  • 15 Al-Sharea A. et al. Native LDL promotes differentiation of human monocytes to macrophages with an inflammatory phenotype. Thromb Haemost 2016; 115: 762-772.
  • 16 Williams HJ. et al. Macrophage differentiation and function in atherosclerosis: opportunities for therapeutic intervention?. J Innate Immun 2012; 04: 498-508.
  • 17 De Paoli F. et al. Macrophage phenotypes and their modulation in atherosclerosis. Circ J 2014; 78: 1775-1781.
  • 18 Rojas J. et al. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis. Scientifica 2015; 2015: 851252.
  • 19 Weber C. et al. Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the European Society of Cardiology (ESC) Working Groups “Atherosclerosis & Vascular Biology” and “Thrombosis”. Thromb Haemost 2016; 116: 626-637.
  • 20 Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 2007; 81: 584-592.
  • 21 Cros J. et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010; 33: 375-386.
  • 22 Huang ZS, Chiang BL. Correlation between serum lipid profiles and the ratio and count of the CD16+ monocyte subset in peripheral blood of apparently healthy adults. J Formos Med Assoc 2002; 101: 11-17.
  • 23 Ingersoll MA. et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010; 115: e10-19.
  • 24 Sternberg Z. et al. Flow cytometry and gene expression profiling of immune cells of the carotid plaque and peripheral blood. Atherosclerosis 2013; 229: 338-347.
  • 25 Krausgruber T. et al. IRF5 promotes inflammatory macrophage polarisation and TH1-TH17 responses. Nat Immunol 2011; 12: 231-238.
  • 26 Weiss M. et al. IRF5 is a specific marker of inflammatory macrophages in vivo. Mediators Inflamm 2013; 2013: 245804.
  • 27 Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280-288.
  • 28 Vink A. et al. HIF-1 alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis 2007; 195: e69-75.
  • 29 Hutter R. et al. Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1alpha activation: a novel aspect of angiogenesis in atherosclerosis. J Cardiovasc Transl Res 2013; 06: 558-569.
  • 30 Chen CZ. et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83-86.
  • 31 O’Connell RM. et al. MicroRNA function in myeloid biology. Blood 2011; 118: 2960-2969.
  • 32 Ahlin F. et al. MicroRNAs as circulating biomarkers in acute coronary syndromes: A review. Vascul Pharmacol 2016; 81: 15-21.
  • 33 Gao Y. et al. Functional regulatory roles of microRNAs in atherosclerosis. Clin Chim Acta 2016; 460: 164-171.
  • 34 Wu XQ. et al. Emerging role of microRNAs in regulating macrophage activation and polarisation in immune response and inflammation. Immunology 2016; 148: 237-248.
  • 35 Cai X. et al. Re-polarisation of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J Mol Cell Biol 2012; 04: 341-343.
  • 36 Zhang E, Wu Y. Dual effects of miR-155 on macrophages at different stages of atherosclerosis: LDL is the key?. Med Hypotheses 2014; 83: 74-78.
  • 37 Duewell P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464: 1357-1361.
  • 38 Huber J. et al. Oxidised cholesteryl linoleates stimulate endothelial cells to bind monocytes via the extracellular signal-regulated kinase 1/2 pathway. Arterioscler Thromb Vasc Biol 2002; 22: 581-586.
  • 39 Huang Z. et al. 7-ketocholesteryl-9-carboxynonanoate induced nuclear factor-kappa B activation in J774A.1 macrophages. Life Sci 2010; 87: 651-657.
  • 40 Seneviratne AN. et al. Low shear stress induces M1 macrophage polarisation in murine thin-cap atherosclerotic plaques. J Mol Cell Cardiol 2015; 89: 168-172.
  • 41 Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 03: 23-35.
  • 42 Satoh T. et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarisation and host responses against helminth infection. Nat Immunol 2010; 11: 936-944.
  • 43 Junttila IS. et al. Tuning sensitivity to IL-4 and IL-13: differential expression of IL-4Ralpha, IL-13Ralpha1, and gammac regulates relative cytokine sensitivity. J Exp Med 2008; 205: 2595-2608.
  • 44 Odegaard JI. et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007; 447: 1116-1120.
  • 45 Kang K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarisation and insulin sensitivity. Cell Metab 2008; 07: 485-495.
  • 46 Takeda N. et al. Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev 2010; 24: 491-501.
  • 47 Liao X. et al. Kruppel-like factor 4 regulates macrophage polarisation. J Clin Invest 2011; 121: 2736-2749.
  • 48 Campbell L. et al. Estrogen receptor-alpha promotes alternative macrophage activation during cutaneous repair. J Invest Dermatol 2014; 134: 2447-2457.
  • 49 El Kasmi KC. et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 2008; 09: 1399-1406.
  • 50 Feig JE. et al. HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc Natl Acad Sci USA 2011; 108: 7166-7171.
  • 51 Sanson M. et al. HDL induces the expression of the M2 macrophage markers arginase 1 and Fizz-1 in a STAT6-dependent process. PLoS One 2013; 08: e74676.
  • 52 Lovren F. et al. Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages. Am J Physiol Heart Circ Physiol 2010; 299: H656-663.
  • 53 Miller AM. et al. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res 2010; 107: 650-658.
  • 54 Baitsch D. et al. Apolipoprotein E induces antiinflammatory phenotype in macrophages. Arterioscler Thromb Vasc Biol 2011; 31: 1160-1168.
  • 55 Kohlstedt K. et al. Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype. Basic Res Cardiol 2011; 106: 205-215.
  • 56 Ma LJ. et al. Angiotensin type 1 receptor modulates macrophage polarisation and renal injury in obesity. Am J Physiol Renal Physiol 2011; 300: F1203-1213.
  • 57 Devaraj S, Jialal I. C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype. Arterioscler Thromb Vasc Biol 2011; 31: 1397-1402.
  • 58 Adamson S, Leitinger N. Phenotypic modulation of macrophages in response to plaque lipids. Curr Opin Lipidol 2011; 22: 335-342.
  • 59 Sottero B. et al. Expression and synthesis of TGFbeta1 is induced in macrophages by 9-oxononanoyl cholesterol, a major cholesteryl ester oxidation product. Biofactors 2005; 24: 209-216.
  • 60 Hughes JE. et al. Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ Res 2008; 102: 950-958.
  • 61 Titos E. et al. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarisation toward an M2-like phenotype. J Immunol 2011; 187: 5408-5418.
  • 62 McCarthy C. et al. IL-10 mediates the immunoregulatory response in conjugated linoleic acid-induced regression of atherosclerosis. FASEB J 2013; 27: 499-510.
  • 63 Repa JJ. et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000; 289: 1524-1529.
  • 64 Tall AR. et al. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 2008; 07: 365-375.
  • 65 Joseph SB. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 2002; 99: 7604-7609.
  • 66 Levin N. et al. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 2005; 25: 135-142.
  • 67 Pourcet B. et al. LXRalpha regulates macrophage arginase 1 through PU.1 and interferon regulatory factor 8. Circ Res 2011; 109: 492-501.
  • 68 Dai Y. et al. Regulation of MSR-1 and CD36 in macrophages by LOX-1 mediated through PPAR-gamma. Biochem Biophys Res Commun 2013; 431: 496-500.
  • 69 Yoon YS. et al. PPARgamma activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol 2015; 08: 1031-1046.
  • 70 Lee CG. et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 2001; 194: 809-821.
  • 71 Jetten N. et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 2014; 17: 109-118.
  • 72 Edwards JP. et al. Biochemical and functional characterisation of three activated macrophage populations. J Leukoc Biol 2006; 80: 1298-1307.
  • 73 Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol 2013; 93: 875-881.
  • 74 White MJ, Gomer RH. Trypsin, Tryptase, and Thrombin Polarize Macrophages towards a Pro-Fibrotic M2a Phenotype. PLoS One 2015; 10: e0138748.
  • 75 Ambarus CA. et al. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10. PLoS One 2012; 07: e35994.
  • 76 Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 08: 958-969.
  • 77 Gerber JS, Mosser DM. Reversing lipopolysaccharide toxicity by ligating the macrophage Fc gamma receptors. J Immunol 2001; 166: 6861-6868.
  • 78 Mantovani A. et al. The chemokine system in diverse forms of macrophage activation and polarisation. Trends Immunol 2004; 25: 677-686.
  • 79 Ohlsson SM. et al. Serum from patients with systemic vasculitis induces alternatively activated macrophage M2c polarisation. Clin Immunol 2014; 152: 10-19.
  • 80 Ferrante CJ, Leibovich SJ. Regulation of Macrophage Polarisation and Wound Healing. Adv Wound Care 2012; 01: 10-16.
  • 81 Pinhal-Enfield G. et al. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. Am J Pathol 2003; 163: 711-721.
  • 82 Grinberg S. et al. Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. Am J Pathol 2009; 175: 2439-2453.
  • 83 Ferrante CJ. et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signalling. Inflammation 2013; 36: 921-931.
  • 84 Wu WK. et al. IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia. Immunobiology 2010; 215: 796-803.
  • 85 Kadl A. et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 2010; 107: 737-746.
  • 86 Marques L. et al. Iron gene expression profile in atherogenic Mox macrophages. Biochim Biophys Acta 2016; 1862: 1137-1146.
  • 87 Kadl A. et al. Oxidised phospholipid-induced inflammation is mediated by Tolllike receptor 2. Free Radic Biol Med 2011; 51: 1903-1909.
  • 88 Kolodgie FD. et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003; 349: 2316-2325.
  • 89 Kockx MM. et al. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23: 440-446.
  • 90 Sindrilaru A. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 2011; 121: 985-997.
  • 91 Boyle JJ. et al. Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 2009; 174: 1097-1108.
  • 92 Boyle JJ. et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res 2012; 110: 20-33.
  • 93 Boyle JJ. et al. Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2011; 31: 2685-2691.
  • 94 Kristiansen M. et al. Identification of the haemoglobin scavenger receptor. Nature 2001; 409: 198-201.
  • 95 Madsen M, Graversen JH, Moestrup SK. Haptoglobin and CD163: captor and receptor gating hemoglobin to macrophage lysosomes. Redox Rep 2001; 06: 386-388.
  • 96 Finn AV. et al. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 2012; 59: 166-177.
  • 97 Gleissner CA. et al. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol 2010; 184: 4810-4818.
  • 98 Gleissner CA. et al. CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circ Res 2010; 106: 203-211.
  • 99 Erbel C. et al. CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+ in vitro and in vivo. Innate Immun 2015; 21: 255-265.
  • 100 Stoger JL. et al. Distribution of macrophage polarisation markers in human atherosclerosis. Atherosclerosis 2012; 225: 461-468.
  • 101 Chinetti-Gbaguidi G. et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways. Circ Res 2011; 108: 985-995.
  • 102 Cho KY. et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis 2013; 22: 910-918.
  • 103 Lee CW. et al. Macrophage heterogeneity of culprit coronary plaques in patients with acute myocardial infarction or stable angina. Am J Clin Pathol 2013; 139: 317-322.
  • 104 Medbury HJ. et al. Differing association of macrophage subsets with atherosclerotic plaque stability. Int Angiol 2013; 32: 74-84.
  • 105 Howard DP. et al. Symptomatic carotid atherosclerotic disease: correlations between plaque composition and ipsilateral stroke risk. Stroke 2015; 46: 182-189.
  • 106 Erbel C. et al. Prevalence of M4 macrophages within human coronary atherosclerotic plaques is associated with features of plaque instability. Int J Cardiol 2015; 186: 219-225.
  • 107 Carbone F. et al. Vitamin D receptor is expressed within human carotid plaques and correlates with pro-inflammatory M1 macrophages. Vascul Pharmacol 2016 Epub ahead of print
  • 108 Tawakol A. et al. In vivo 18F–fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006; 48: 1818-1824.
  • 109 Gaemperli O. et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C–PK11195 positron emission tomography/computed tomography. Eur Heart J 2012; 33: 1902-1910.
  • 110 Degnan AJ. et al. Evaluation of ultrasmall superparamagnetic iron oxide-enhanced MRI of carotid atherosclerosis to assess risk of cerebrovascular and cardiovascular events: follow-up of the ATHEROMA trial. Cerebrovasc Dis 2012; 34: 169-173.
  • 111 Saito H. et al. Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc Dis 2013; 35: 370-377.
  • 112 Fukuda K. et al. Relationship between carotid artery remodeling and plaque vulnerability with T1-weighted magnetic resonance imaging. J Stroke Cerebrovasc Dis 2014; 23: 1462-1470.
  • 113 Khallou-Laschet J. et al. Macrophage plasticity in experimental atherosclerosis. PLoS One 2010; 05: e8852.
  • 114 Lee PP. et al. The many faces of Artemis-deficient combined immunodeficiency - Two patients with DCLRE1C mutations and a systematic literature review of genotype-phenotype correlation. Clin Immunol 2013; 149: 464-474.
  • 115 Mukhopadhyay S. et al. Formation of distinct chromatin conformation signatures epigenetically regulate macrophage activation. Int Immunopharmacol 2014; 18: 7-11.
  • 116 Eames HL. et al. KAP1/TRIM28: an inhibitor of IRF5 function in inflammatory macrophages. Immunobiology 2012; 217: 1315-1324.
  • 117 Van den Bossche J. et al. Inhibiting epigenetic enzymes to improve atherogenic macrophage functions. Biochem Biophys Res Commun 2014; 455: 396-402.
  • 118 Austenaa L. et al. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity 2012; 36: 572-585.
  • 119 Stender JD. et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell 2012; 48: 28-38.
  • 120 Kapellos TS, Iqbal AJ. Epigenetic Control of Macrophage Polarisation and Soluble Mediator Gene Expression during Inflammation. Mediators Inflamm 2016; 2016: 6591703.
  • 121 Greissel A. et al. Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques. Cardiovasc Pathol 2016; 25: 79-86.
  • 122 Tabas I, Bornfeldt KE. Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circ Res 2016; 118: 653-667.
  • 123 Fadini GP. et al. Pro-inflammatory monocyte-macrophage polarisation imbalance in human hypercholesterolemia and atherosclerosis. Atherosclerosis 2014; 237: 805-808.
  • 124 Escate R. et al. LDL accelerates monocyte to macrophage differentiation: Effects on adhesion and anoikis. Atherosclerosis 2016; 246: 177-186.
  • 125 Cho HJ. et al. Induction of dendritic cell-like phenotype in macrophages during foam cell formation. Physiol Genomics 2007; 29: 149-160.
  • 126 Park YM. et al. CD36 modulates migration of mouse and human macrophages in response to oxidised LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest 2009; 119: 136-145.
  • 127 Sheedy FJ. et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2010; 11: 141-147.
  • 128 Manning-Tobin JJ. et al. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 2009; 29: 19-26.
  • 129 Spann NJ. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 2012; 151: 138-152.
  • 130 Sarov-Blat L. et al. Predominance of a proinflammatory phenotype in monocyte-derived macrophages from subjects with low plasma HDL-cholesterol. Arterioscler Thromb Vasc Biol 2007; 27: 1115-1122.
  • 131 Bouhlel MA. et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 2007; 06: 137-143.
  • 132 van der Meij E. et al. A clinical evaluation of statin pleiotropy: statins selectively and dose-dependently reduce vascular inflammation. PLoS One 2013; 08: e53882.
  • 133 Hirata Y. et al. Coronary atherosclerosis is associated with macrophage polarisation in epicardial adipose tissue. J Am Coll Cardiol 2011; 58: 248-255.
  • 134 Fadini GP. et al. Monocyte-macrophage polarisation balance in pre-diabetic individuals. Acta Diabetol 2013; 50: 977-982.
  • 135 Roma-Lavisse C. et al. M1 and M2 macrophage proteolytic and angiogenic profile analysis in atherosclerotic patients reveals a distinctive profile in type 2 diabetes. Diab Vasc Dis Res 2015; 12: 279-289.
  • 136 Torres-Castro I. et al. Human monocytes and macrophages undergo M1-type inflammatory polarisation in response to high levels of glucose. Immunol Lett 2016; 176: 81-89.
  • 137 Marsch E. et al. Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis. Arterioscler Thromb Vasc Biol 2014; 34: 2545-2553.
  • 138 Sluimer JC. et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 2008; 51: 1258-1265.
  • 139 Tawakol A. et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005; 12: 294-301.
  • 140 Tahara N. et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006; 48: 1825-1831.
  • 141 Lee SJ. et al. Reversal of vascular 18F–FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med 2008; 49: 1277-1282.
  • 142 Folco EJ. et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: Implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol 2011; 58: 603-614.
  • 143 Matter CM. et al. 18F–choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 2006; 26: 584-589.
  • 144 Davies JR. et al. FDG-PET can distinguish inflamed from non-inflamed plaque in an animal model of atherosclerosis. Int J Cardiovasc Imaging 2010; 26: 41-48.
  • 145 Lamare F. et al. Detection and quantification of large-vessel inflammation with 11C-(R)-PK11195 PET/CT. J Nucl Med 2011; 52: 33-39.
  • 146 Fujimura Y. et al. Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [(3)H]PK 11195. Atherosclerosis 2008; 201: 108-111.
  • 147 Gerretsen SC. et al. Visualisation of coronary wall atherosclerosis in asymptomatic subjects and patients with coronary artery disease using magnetic resonance imaging. PLoS One 2010; 05: pii: e12998.
  • 148 Kerwin WS. et al. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 2006; 241: 459-468.
  • 149 Chan JM. et al. Imaging of the vulnerable carotid plaque: biological targeting of inflammation in atherosclerosis using iron oxide particles and MRI. Eur J Vasc Endovasc Surg 2014; 47: 462-469.
  • 150 Trivedi RA. et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 2006; 26: 1601-1606.
  • 151 Jaffer FA. et al. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 2006; 05: 85-92.
  • 152 Metz S. Biomarkers for plaque vulnerability. Int J Cardiovasc Imaging 2011; 27: 901-912.
  • 153 Mani V. et al. Feasibility of in vivo identification of endogenous ferritin with positive contrast MRI in rabbit carotid crush injury using GRASP. Magn Reson Med 2006; 56: 1096-1106.
  • 154 Makowski MR. et al. Noninvasive assessment of atherosclerotic plaque progression in ApoE−/− mice using susceptibility gradient mapping. Circ Cardiovasc Imaging 2011; 04: 295-303.
  • 155 Dong Y. et al. Polymer-Lipid Hybrid Theranostic Nanoparticles Co-Delivering Ultrasmall Superparamagnetic Iron Oxide and Paclitaxel for Targeted Magnetic Resonance Imaging and Therapy in Atherosclerotic Plaque. J Biomed Nanotechnol 2016; 12: 1245-1257.
  • 156 Segers FM. et al. Scavenger receptor-AI-targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2013; 33: 1812-1819.
  • 157 Sha T. et al. Experimental study of USPIO-enhanced MRI in the detection of atherosclerotic plaque and the intervention of atorvastatin. Exp Ther Med 2016; 12: 141-146.
  • 158 Tang TY. et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 2009; 53: 2039-2050.
  • 159 Weissleder R. et al. Imaging macrophages with nanoparticles. Nat Mater 2014; 13: 125-138.
  • 160 Nahrendorf M. et al. Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 2009; 29: 1444-1451.
  • 161 Lipinski MJ. et al. Macrophage-specific lipid-based nanoparticles improve cardiac magnetic resonance detection and characterisation of human atherosclerosis. JACC Cardiovasc Imaging 2009; 02: 637-647.
  • 162 Briley-Saebo KC. et al. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol 2011; 57: 337-347.
  • 163 Amirbekian V. et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci USA 2007; 104: 961-966.
  • 164 Majmudar MD. et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res 2013; 112: 755-761.
  • 165 Murray PJ. et al. Macrophage activation and polarisation: nomenclature and experimental guidelines. Immunity 2014; 41: 14-20.
  • 166 Novoselov VV. et al. Study of the activated macrophage transcriptome. Exp Mol Pathol 2015; 99: 575-580.
  • 167 Gosselin D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 2014; 159: 1327-1340.
  • 168 Lavin Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014; 159: 1312-1326.
  • 169 Xue J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014; 40: 274-288.
  • 170 Schultze JL. Transcriptional programming of human macrophages: on the way to systems immunology. J Mol Med 2015; 93: 589-597.
  • 171 Calfon MA. et al. In vivo near infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal approach to imaging of atherosclerosis. J Vis Exp 2011; 54: pii: 2257.
  • 172 Zhou M. et al. Fluorescence Imaging of Inflammation in Live Animals. Methods Mol Biol 2016; 1444: 45-54.
  • 173 Shan L. Near-infrared fluorescence 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR)-labeled macrophages for cell imaging. In: Molecular Imaging and Contrast Agent Database (MICAD) 2004
  • 174 McCarthy JR. et al. A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 2010; 06: 2041-2049.
  • 175 Shon SM. et al. Photodynamic therapy using a protease-mediated theranostic agent reduces cathepsin-B activity in mouse atheromata in vivo. Arterioscler Thromb Vasc Biol 2013; 33: 1360-1365.
  • 176 Qin J. et al. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. Nanoscale 2015; 07: 13991-14001.
  • 177 Kim S. et al. Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery. Eur Heart J 2016 Epub ahead of print
  • 178 Gomes Quindere AL. et al. Treatment with sulphated galactan inhibits macrophage chemotaxis and reduces intraplaque macrophage content in atherosclerotic mice. Vascul Pharmacol 2015; 71: 84-92.
  • 179 Riek AE. et al. Vitamin D suppression of endoplasmic reticulum stress promotes an antiatherogenic monocyte/macrophage phenotype in type 2 diabetic patients. J Biol Chem 2012; 287: 38482-38494.
  • 180 Riek AE. et al. 1,25(OH)2 vitamin D suppresses macrophage migration and reverses atherogenic cholesterol metabolism in type 2 diabetic patients. J Steroid Biochem Mol Biol 2013; 136: 309-312.
  • 181 Yin K. et al. Vitamin D Protects Against Atherosclerosis via Regulation of Cholesterol Efflux and Macrophage Polarisation in Hypercholesterolemic Swine. Arterioscler Thromb Vasc Biol 2015; 35: 2432-2442.