Tierarztl Prax Ausg G Grosstiere Nutztiere 2015; 43(06): 341-349
DOI: 10.15653/TPG-150371
Original Article
Schattauer GmbH

Energy balance in transition cows and its association with health, reproduction and milk production

Energiebilanz bei der Transitkuh und ihre Auswirkung auf Gesundheitsstatus, Reproduktion und Milchleistung
C. Furken
1   Clinic for Cattle, University of Veterinary Medicine Hannover, Germany
,
T. Nakao
2   Department of Veterinary Clinical Science, Yamaguchi University, Yamaguchi, Japan
,
M. Hoedemaker
1   Clinic for Cattle, University of Veterinary Medicine Hannover, Germany
› Author Affiliations
Further Information

Publication History

Received: 30 May 2014

Accepted after revision: 25 August 2015

Publication Date:
09 January 2018 (online)

Summary

Objective: It was the purpose of this study to determine the effects of non-esterified fatty acids (NEFA) concentrations at different time periods of the transition period as well as lactation number on metabolism, health, reproduction and milk production in dairy cows. Material and methods: This trial was conducted in a single dairy herd located in Northern Germany. Of the herd, which comprised 330 lactating Holstein cows housed in a free stall barn and fed a total mixed ration (TMR), 83 primiparous and multiparous cows were randomly selected. Animals were checked for body condition score (BCS), locomo tion score, calving data, quality of colostrum, reproductive measures, daily rectal temperature of the first 10 days post-partum (p. p.), health data and culling rates up to 200 days in milk (DIM) as well as milk production until 305 DIM. Three different time periods were considered: 3 and 1 week ante partum (a. p.); partus and 1 week p. p.; 3 weeks p. p. Results: Animals with NEFA concentrations 0.4 mmol/l ante partum had a higher risk of no ovarian activity in week 5 p. p. and of subclinical ketosis post partum than cows with lower NEFA concentrations (p < 0.05). Cows with NEFA concentrations 1.1 mmol/l in week 1 p. p., in comparison to those with lower NEFA concentrations, showed a higher prevalence of clinical ketosis (24.1% vs. 5.9%), subclinical ketosis (62.1% vs. 34.0%) and culling rate within 200 DIM (34.5% vs. 14.0%) (p < 0.05). Cows with NEFA concentrations 0.3 mmol/l at week 3 p. p. had higher 100- and 305-day milk yields than cows with lower NEFA concentrations (p < 0.05). First lactating heifers were at higher risk to loose body condition ante partum, of dystocia, fever within the first 10 DIM, metritis, clinical and subclinical ketosis as well as to develop a disease within the first 30 DIM (p < 0.05). Multipara were more likely to loose body condition after calving, to a prolonged calving to first service interval and to higher milk yields (p < 0.05). Conclusion: In conclusion increased NEFA concentrations during the transition period as well as parity can have an influence on health, production and reproduction of dairy cows.

Zusammenfassung

Ziel: Untersuchung der Wirkung von Konzentrationen freier Fettsäuren (NEFA) zu verschiedenen Zeitpunkten der Transitphase sowie der Parität auf Stoffwechsel, Gesundheit, Reproduktion und Milchleistung von Milchkühen. Material und Methoden: Die Untersuchungen wurden auf einem norddeutschen Milchviehbetrieb durchgeführt. Von 330 laktierenden Deutsche-Holstein-Kühen, die in einem Laufstall gehalten und mit einer Gesamtmischration gefüttert wurden, erfolgte eine randomisierte Auswahl 83 primi- und multiparer Tiere. Ausgewertet wurden Körperkondition, Lahmheiten, Kalbedaten, Kolostrumqualität, Reproduktionsdaten, Fieberhäufigkeit in den ersten 10 Tagen post partum (p. p.), Gesundheitsdaten, die Abgangsrate bis Tag 200 p. p. sowie die Milchleistung bis Tag 305 p. p. Die Untersuchungen erfassten folgende Zeiträume: Woche 3 und 1 ante partum (a. p.); Kalbung und Woche 1 p. p.; Woche 3 p. p. Ergebnisse: Tiere mit NEFA-Konzentrationen 0,4 mmol/l ante partum hatten in Woche 5 p. p. eine geringere zyklische Ovaraktivität und litten häufiger unter subklinischer Ketose als Tiere mit niedrigeren NEFA-Konzentrationen (p < 0,05). Im Vergleich zu Kühen mit niedrigeren NEFA-Konzentrationen zeigten Kühe mit NEFA-Konzentrationen 1,1 mmol/l in Woche 1 p. p. ein höheres Erkrankungsrisiko für klinische Ketose (24,1% vs. 5,9%), subklinische Ketose (62,1% vs. 34,0%) sowie Abgänge bis Tag 200 p. p. (34,5% vs. 14,0%) (p < 0,05). Kühe mit NEFA-Konzentrationen 0,3 mmol/l in Woche 3 p. p. erbrachten höhere 100- und 305-Tage-Leistungen als Tiere mit niedrigeren NEFA-Konzentrationen (p < 0,05). Bei Primipara ergaben sich im Vergleich zu Multipara höhere Gewichtsverluste ante partum, mehr Schwergeburten, häufiger Fieber in den ersten 10 Tagen p. p., mehr Metritiden, klinische und subklinische Ketosen sowie eine höhere Wahrscheinlichkeit, in den ersten 30 Tagen p. p. zu erkran ken (p < 0,05). Multipara zeigten häufiger Gewichtsverluste nach der Kalbung, eine verlängerte Rastzeit sowie höhere Milchleistungen (p < 0,05). Schlussfolgerung: Sowohl erhöhte NEFA-Konzentrationen in der Transitphase als auch die Parität können einen Einfluss auf Gesundheit, Leistungen und Reproduktion von Milchkühen haben.

 
  • References

  • 1 Bicalho RC, Galvao KN, Cheong SH, Gilbert RO, Warnick LD, Guard CL. Effect of stillbirths on dam survival and reproduction performance in Holstein dairy cows. J Dairy Sci 2007; 90 (06) 2797-2803.
  • 2 Bisinotto RS, Greco LF, Ribeiro ES, Martinez N, Lima FS, Staples CR, Thatcher WW, Santos JEP. Influences of nutrition and metabolism on fertility of dairy cows. Anim Reprod 2012; 9 (03) 260-272.
  • 3 Butler WR. The role of energy balance and metabolism on reproduction of dairy cows. Proceedings of the 23rd Annual Florida Ruminant Nutrition Symposium. 2012. Jan 31 – Feb 1; Gainesville, FL, USA: University of Florida; 2012: 85-96.
  • 4 Cadorniga-Valino C, Grummer RR, Armentano LE, Donkin SS, Bertics SJ. Effects of fatty acids and hormones on fatty acid metabolism and gluconeogenesis in bovine hepatocytes. J Dairy Sci 1997; 80 (04) 646-656.
  • 5 Chapinal N, Carson M, Duffield TF, Capel M, Godden S, Overton M, Santos JEP, LeBlanc SJ. The association of serum metabolites with clinical disease during the transition period. J Dairy Sci 2011; 94 (10) 4897-4903.
  • 6 De Kruif A, Mansfeld R, Hoedemaker M. Tierärztliche Bestandsbetreuung beim Milchrind. 2. Aufl.. Stuttgart: Enke; 2007
  • 7 Dematawewa CMB, Berge PJ. Effect of dystocia on yield, fertility, and cow losses and an economic evaluation of dystocia scores for Holsteins. J Dairy Sci 1997; 80 (04) 754-761.
  • 8 Dirksen G, Gründer HD, Stöber M. Ketose, Lipomobilisation. In: Innere Medizin und Chirurgie des Rindes. 5. Aufl.. Stuttgart: Parey; 2006: 649-664.
  • 9 Donkin SS. The role of liver metabolism during transition on postpartum health and performance. Proceedings of the 23rd Annual Florida Ruminant Nutrition Symposium. 2012. Jan 31 – Feb 1; Gainesville, FL, USA: University of Florida; 2012: 97-107.
  • 10 Drackley JK. Biology of dairy cows during the transition period: The final frontier?. J Dairy Sci 1999; 82 (11) 2259-2273.
  • 11 Duffield TF, LeBlanc SJ. Interpretation of serum metabolic parameters around the transition period (Internet). 2009 (accessed 07–25-2013; cited 04–08–2013). Available under: http://www.cals.arizona.edu/ans/swnmc/Proceedings/2009/11Duffield_2_09.pdf
  • 12 Edmonson AJ, Lean IJ, Weaver LD, Farver T, Webster G. A body condition scoring chart of Holstein dairy cows. J Dairy Sci 1989; 72 (01) 68-78.
  • 13 Emery RS, Liesman JS, Herdt TH. Metabolism of long chain fatty acids by ruminant liver. J Nutr 1992; 122 (Suppl. 03) 832-837.
  • 14 Fleenor WA, Stott GH. Hydrometer test for estimation of immunoglobulin concentration in bovine colostrum. J Dairy Sci 1980; 63 (06) 973-977.
  • 15 Furken C, Hoedemaker M. Einfluss einer Fütterung von pansengeschütztem Cholin in der Transitphase bei Milchkühen. Teil 1: Stoffwechsel und Milchleistung. Tierärztl Prax 2014; 42 (G): 11-21.
  • 16 Gerloff BJ. Dry cow management for the prevention of ketosis and fatty liver in dairy cows. Vet Clin North Am Food Anim Pract 2000; 16 (02) 283-292.
  • 17 Goff JP, Horst RL. Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci 1997; 80 (07) 1260-1268.
  • 18 Hammon DS, Evjen LM, Dhiman TR, Goff JP, Walters JL. Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet Immunol Immunopathol 2006; 113 (1–2): 21-29.
  • 19 Hoedemaker M, Prange D, Zerbe H, Frank J, Daxenberger A, Meyer HHD. Peripartal propylene glycol supplementation and metabolism, animal health, fertility, and production in dairy cows. J Dairy Sci 2004; 87 (07) 2136-2145.
  • 20 Jorritsma R, Jorritsma H, Schukken YH, Wentink GH. Relationships between fatty liver and fertility and some periparturient diseases in commercial Dutch dairy herds. Theriogenology 2000; 54 (07) 1065-1072.
  • 21 Kaneene JB, Miller RA, Herdt TH, Gardiner JC. The association of serum nonesterified fatty acids and cholesterol, management and feeding practices with peripartum disease in dairy cows. Prev Vet Med 1997; 31 (1–2): 59-72.
  • 22 Kusenda M, Kaske M, Piechotta M, Locher L, Starke A, Huber K, Rehage J. Effects of dexamethasone-21-isonicotinate on peripheral insulin action in dairy cows 5 days after surgical correction of abomasal displacement. J Vet Intern Med 2013; 27 (01) 200-206.
  • 23 LeBlanc SJ. Monitoring metabolic health of dairy cattle in the transition period. J Reprod Dev 2010; 56 (Suppl. 01) S29-S35.
  • 24 LeBlanc SJ. Health in the transition period and reproductive performance (Internet). 2010 (accessed 07–25-2013; cited 04–08–2013). Available under: http://www.wcds.ca/proc/2010/Manuscripts/p097–110LeBlanc.pdf
  • 25 Markusfeld O, Galon N, Ezra E. Body condition score, health, yield and fertility in dairy cows. Vet Rec 1997; 141 (03) 67-72.
  • 26 McArt JA, Nydam DV, Oetzel GR. Epidemiology of subclinical ketosis in early lactation dairy cattle. J Dairy Sci 2012; 95 (09) 5056-5066.
  • 27 Meijering A. Dystocia and stillbirth in cattle – A review of causes, relations and implications. Livest Prod Sci 1984; 11 (02) 143-177.
  • 28 Nakao T, Hoedemaker M, Feldmann M, Grundling N, Gautam G. Energy balance in dairy cows in the dry and early lactation periods monitored by serum NEFA and its association with subclinical ketosis and reproductive performance. Proceedings of the 116th Annual Conference of the Japanese Society of Animal Science; 2013 Mar 27–30. Hiroshima, Japan: Rakuno Gakuen University, Japan; 2013
  • 29 Ospina PA, Nydam DV, Stokol T, Overton TR. Evaluation of nonesterified fatty acids and beta-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J Dairy Sci 2010; 93 (02) 546-554.
  • 30 Ospina PA, Nydam DV, Stokol T, Overton TR. Association betweeen the proportion of sampled transition cows with increased nonesterified fatty acids and -hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J Dairy Sci 2010; 93 (08) 3595-3601.
  • 31 Overton TR. Managing metabolism of transition dairy cows through nutrition. Proceedings of the 36th Pacific Northwest Animal Nutrition Conference. 2001. Oct 9–18; Boise, ID, USA: University of Idaho; 171-188.
  • 32 Prakash BS, Meyer HHD, Schallenberger E, van de Wiel DFM. Development of a sensitive enzyme immunoassay (EIA) for progesterone determination in unextracted bovine plasma using the second antibody technique. J Steroid Biochem 1987; 28 (06) 623-627.
  • 33 Putnam DE. Rumen-stable choline’s role in transition cow liver metabolism and performance (Internet). 2004 (accessed 07–25-2013; cited 04–08–2013). Available under: http://conservancy.umn.edu/bitstream/108764/1/Putnam.pdf
  • 34 Roberts T, Chapinal N, LeBlanc SJ, Kelton DF, Dubuc J, Duffield TF. Metabolic parameters in transition cows as indicators for early-lactation culling risk. J Dairy Sci 2012; 95 (06) 3057-3063.
  • 35 Roche JF. The effect of nutritional management of the dairy cow on reproductive efficiency. Anim Reprod Sci 2006; 96 (3–4): 282-296.
  • 36 Roche JR, Berry DP, Lee JM, Macdonald KA, Boston RC. Describing the body condition score change between successive calvings: A novel strategy generalizable to diverse cohorts. J Dairy Sci 2007; 90 (09) 4378-4393.
  • 37 Scalia D, Lacetera N, Bernabucci U, Demeyere K, Duchateau L, Burvenich C. In vitro effects of nonesterified fatty acids on bovine neutrophils oxidative burst and viability. J Dairy Sci 2006; 89 (01) 147-154.
  • 38 Schulz J. Die gestörte Geburt und geburtshilfliche Maßnahmen. In: Tiermedizinische Geburtskunde und praktische Geburtshilfe. Berlin: Lehmanns; 2010: 144-228.
  • 39 Sheldon IM, Lewis GS, LeBlanc SJ, Gilbert RO. Defining postpartum uterine disease in cattle. Theriogenology 2006; 65 (08) 1516-1530.
  • 40 Sprecher DJ, Hostetler DE, Kaneene JB. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology 1997; 47 (06) 1179-1187.
  • 41 Wathes DC, Fenwick M, Cheng Z, Bourne N, Llewellyn S, Morris DG, Kenny D, Murphy J, Fitzpatrick R. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow. Theriogenology 2007; 68 (Suppl. 01) S323-S241.