Tierarztl Prax Ausg K Kleintiere Heimtiere 2016; 44(04): 237-244
DOI: 10.15654/TPK-150647
Original Article
Schattauer GmbH

Hypochloremia in cats – prevalence and associated diseases

Hypochlorämie bei Katzen – Prävalenz und assoziierte Erkrankungen
Florian K. Zeugswetter
1   University of Veterinary Medicine Vienna, University Clinic for Small Animals, Internal Medicine
,
Maximilian Pagitz
1   University of Veterinary Medicine Vienna, University Clinic for Small Animals, Internal Medicine
,
Mona Sarah Friedrich
1   University of Veterinary Medicine Vienna, University Clinic for Small Animals, Internal Medicine
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 14. August 2015

Accepted after major revision: 07. Januar 2016

Publikationsdatum:
19. Dezember 2017 (online)

Summary

Objective: To describe the prevalence and possible causes of hypochloremia in the local hospital cat population. Material and methods: Retrospective study consisting of two parts. Data were collected from the local electronic medical records database using the search terms „chloride“ and „cats“ (part A), and „blood gas analysis“ and „cats“ (part B). The medical records of the hypochloremic cats were then reviewed to determine prior treatment or infusions and to identify major underlying disease processes. Part A included an age and gender matched non-hypochloremic control group, whereas in part B acid-base status was assessed. Results: Hypochloremia was detected in 367 (27%) of 1363 blood samples. The application of a correction formula to adjust for free water changes decreased the number of hypochloremic cats to 253 (19%). Only a minority had received glucocorticoids or loop diuretics and the prevalence of vomiting was 44%. Common associated disorders were gastrointestinal and respiratory diseases, as well as azotemia and diabetes mellitus. Polyuria/ polydipsia, dehydration, prednisolone or furosemide pretreatment, azotemia and diabetes mellitus increased, whereas fluid therapy and the diagnosis of neoplasia decreased the prevalence of hypochloremia. An inverse correlation was found between corrected chloride and standar dized base excess (rs = –0.597, p = 0.001) as well as anion gap (rs = –0.4, p = 0.026). 99% of the hypochloremic cats had derangements of acid-base balance. Conclusion: Hypochloremia is a common electrolyte disorder in the local cat population. The correction formula is ne cessary to adjust for changes in plasma osmolality. Although associated with metabolic alkalosis, most of the hypochloremic cats have a normal or decreased pH. The inverse correlation of chloride and anion gap als well as the high proportion of azotemic or diabetic animals support the concept of compensatory acidosis induced hypochlor emia. Clinical relevance: Hypochloremia should prompt the clinician to performe blood-gas analysis. Diabetes mellitus (especially ketoacidosis) and renal disease should be included in current algorithms for the evaluation of hypochloremic patients.

Zusammenfassung

Ziel war die Erfassung der Prävalenz und der möglichen Ursachen der Hypochlorämie in der lokalen Katzenpopulation. Material und Methoden: Die Datenerfassung erfolgte retrospektiv mit dem lokalen elektronischen Datenerfassungssystem und den Suchbegriffen „Chlorid“ und „Katzen“ (Teil A) bzw. „Blutgasanalyse“ und „Katzen“ (Teil B). Die Aufzeichnungen zu den hypochlorämischen Katzen wurden auf Vorbehandlungen sowie zugrundeliegende Erkrankungen untersucht. Teil A beinhaltete eine alters- und geschlechtangepasste Kontrollgruppe ohne Hypochlorämie. Ergebnisse: In 367 (27%) von 1363 Proben wurde eine Hypochlorämie diagnostiziert. Die Anwendung der Korrekturformel zur Berücksichtigung von Veränderungen des freien Wassers verminderte die Anzahl hypochlorämischer Katzen auf 253 (19%). Nur eine Minderheit war mit Glukokortikoiden oder Diuretika vortherapiert und die Prävalenz von Erbrechen lag bei 44%. Häufig assoziierte Erkrankungen waren gastrointestinaler und respiratorischer Natur, aber auch Azotämie und Diabetes mellitus. Die Prävalenz der Hypochlorämie erhöhte sich durch die Faktoren Polyurie/Polydipsie, Dehydratation, Vorbehandlungen (Prednisolon oder Furose-mid), Azotämie und Diabetes mellitus und verminderte sich durch Infusionstherapie und die Diagnose Neoplasie. Eine inverse Korrelation bestand zwischen Chlorid und dem standardisierten Basenüberschuss (rs = –0,597, p = 0,001) wie auch mit der Anionenlücke (rs = –0,4, p = 0,026). Veränderungen im Säure-Basen-Haushalt zeigten 99% der hypochlorämischen Katzen. Schlussfolgerung: Die Hypochlorämie stellt bei Katzen eine häufige Elektrolytveränderung dar. Die Anwendung der Korrekturformel ist wichtig, um eine auf Verdünnungseffekten beruhende Pseudohypochlorämie auszuschließen. Obwohl mit metabolischer Alkalose assoziiert, liegt bei den meisten dieser Patienten ein physiologischer oder erniedrigter pH-Wert vor. Die Ergebnisse unterstützen das Konzept der kompensatorischen Azidose-induzierten Hypochlorämie. Klinische Relevanz: Bei einer Hypochlorämie sollte eine Blutgasanalyse erfolgen. Diabetes mellitus (vor allem Ketoazidose) und Nierenversagen sollten in den Algorithmus zur Abklärung einer Hypochlorämie integriert werden.

 
  • References

  • 1 Berend K, Van Hulsteijn LH, Gans ROB. Chloride: the queen of electrolytes?. Eur J Int Med 2012; 23: 203-211.
  • 2 Biondo AW, De Morais HA. Chloride: a quick reference. Vet Clin Small Anim 2008; 38: 459-465.
  • 3 Brenner K, KuKanich KS, Smee NM. Refeeding syndrome in a cat with hepatic lipidosis. J Feline Med Surg 2011; 13: 614-617.
  • 4 Bruskiewicz KA, Nelson RW, Feldman EC, Griffey SM. Diabetic ketosis and ketoacidosis in cats: 42 cases (1980-1995). JAVMA 1997; 211: 188-192.
  • 5 Calia CM, Hohenhaus AE, Fox PR, Meleo K. Acute tumor lysis syndrome in a cat with lymphoma. J Vet Int Med 1996; 10: 409-511.
  • 6 Ching SV, Fettman MJ, Hamar DW, Nagode LA, Smith KR. The effect of chronic dietary acidification using ammonium chloride on acid-base and mineral metabolism in the adult cat. J Nutr 1989; 119: 902-915.
  • 7 Christopher MM, Broussard JD, Peterson ME. Heinz body formation associated with ketoacidosis in diabetic cats. J Vet Intern Med 1995; 9: 24-31.
  • 8 Crenshaw KL, Peterson ME. Pretreatment clinical and laboratory evaluation of cats with diabetes mellitus: 104 cases (1992-1994). JAVMA 1996; 209: 943-949.
  • 9 Declue AE, Delgado C, Chang C, Sharp CR. Clinical and immunologic assessment of sepsis and systemic inflammatory response syndrome in cats. JAVMA 2011; 238: 890-897.
  • 10 DeMonaco SM, Koch MW, Southard TL. Syndrome of inappropriate antidiuretic hormone secretion in a cat with a putative Rathke’s cleft cyst. J Feline Med Surg 2014; 16: 1010-1015.
  • 11 DeMorais HA, Biondo AW. Disorders of chloride: hyperchloremia and hypochloremia. Fluid, Electrolyte and Acid-base Disorders in Small Animal Practice. 4th edn. Dibartola SP. St. Louis: Elsevier Saunders; 2012: 80-91.
  • 12 Djajadiningrat-Laanen S, Galac S, Kooistra H. Primary hyperaldosteronism. Expanding the diagnostic net. J Fel Med Surg 2011; 13: 641-650.
  • 13 Drobatz KJ, Cole SG. The influence of crystalloid type on acid-base and electrolyte status of cats with urethral obstruction. J Vet Emerg Crit Care 2008; 18: 355-361.
  • 14 Durrocher LL, Hinchcliff KW, DiBartola SP, Johnson SE. Acid-base and hormonal abnormalities in dogs with naturally occurring diabetes mellitus. JAVMA 2008; 232: 1310-1320.
  • 15 Durward A, Skellett S, Mayer A, Taylor D, Tibby SM, Murdoch IA. The value of the chloride:sodium ratio in differentiating the aetiology of metabolic acidosis. Intens Care Med 2001; 27: 828-835.
  • 16 Elliott J. Staging chronic kidney disease. BSAVA Manual of Canine and Feline Nephrology and Urology.. Elliott J, Grauer GF. Gloucester: BSAVA; 2007: 159-166.
  • 17 Elliott J, Syme HM, Markwell PJ. Acid-base balance of cats with chronic renal failure: effect of deterioration in renal function. J Small Anim Pract 2003; 44: 261-268.
  • 18 Elliott J, Syme HM, Reubens E, Markwell PJ. Assessment of acid-base status of cats with naturally occurring chronic renal failure. J Small Anim Pract 2003; 44: 65-70.
  • 19 Funk GC, Zauner C, Bauer E, Oschatz E, Schneeweiss B. Compensatory hypochloraemic alkalosis in diabetic ketoacidosis. Diabetologia 2003; 46: 871-873.
  • 20 Galla JH. Metabolic alkalosis. J Am Soc Nephrol 2000; 11: 369-375.
  • 21 Goutal CM, Keir I, Kenney S, Rush JE, Freeman LM. Evaluation of acute congestive heart failure in dogs and cats: 145 cases (2007-2008). J Vet Emerg Crit Care 2010; 20: 330-337.
  • 22 Ha YS, Hopper K, Epstein SE. Incidence, nature and etiology of metabolic alkalosis in dogs and cats. J Vet Int Med 2013; 27: 847-853.
  • 23 Hopper K, Epstein SE. Incidence, nature, and etiology of metabolic acidosis in dogs and cats. J Vet Int Med 2012; 26: 1107-1114.
  • 24 Hopper K, Haskins S. A case-based review of a simplified quantitative approach to acid-base analysis. J Vet Emerg Crit Care 2008; 18: 467-476.
  • 25 Kurt A, Ecevit A, Ozkiraz S, Ince DA, Akcan AB, Tarcan A. The use of chloride-sodium ratio in the evaluation of metabolic acidosis in critically ill neonates. Eur J Pediatr 2012; 171: 963-969.
  • 26 Lee JA, Drobatz KJ. Characterization of the clinical characteristics, electrolytes, acid-base, and renal parameters in male cats with urethral obstruction. J Vet Emerg Crit Care 2003; 13: 227-233.
  • 27 Lemieux G, Lemieux C, Shirley D, Berkofsky J. Metabolic characteristics of cat kidney: failure to adapt to metabolic acidosis. Am J Physiol 1990; 259: 227-281.
  • 28 Lowe AD, Campbell KL, Barger A, Schaeffer DJ, Borst L. Clinical, clinicopathological and histological changes observed in 14 cats treated with glucocorticoids. Vet Rec 2008; 162: 777-783.
  • 29 Meltesen HS, Bohn AA. Using corrected serum chloride and predicted bicarbonate concentration to interpret acid-base status in dogs. Vet Clin Pathol 2012; 41: 509-517.
  • 30 Peterson ME, Greco DS, Orth DN. Primary hypoadrenocorticism in ten cats. J Vet Int Med 1989; 3: 55-58.
  • 31 Polak A, Haynie GD, Hays RM, Schwartz WB. Effects of chronic hypercapnia on electrolyte and acid-base equilibrium. I. Adaption. J Clin Invest 1961; 40: 1223-1237.
  • 32 Sparkes AH, Cannon M, Church D, Fleeman L, Harvey A, Hoenig M, Peterson ME, Reusch CE, Taylor S, Rosenberg D. ISFM consensus guidelines on the practical management of diabetes mellitus in cats. J Feline Med Surg 2015; 17: 235-250.
  • 33 Spino M, Sellers EM, Kaplan HL, Stapleton C, McLeod SM. Adverse biochemical and clinical consequences of furosemide administration. Can Med Assoc J 1978; 118: 1513-1518.
  • 34 Stockham SL, Scott MA. Monovalent electrolytes and osmolality. Fundamentals of Veterinary Clinical Pathology. 2nd edn. Ames: Blackwell; 2008: 495-545.
  • 35 Toll PW, Gaehtgens P, Neuhaus D, Pieschl RL, Fedde MR. Fluid, electrolyte, and packed cell volume shifts in racing greyhounds. Am J Vet Res 1995; 56: 227-232.
  • 36 Valentin SY, Cortright CC, Nelson RW, Pressler BM, Rosenberg D, Moore GE, Scott-Moncrief JC. Clinical findings, diagnostic test results, and treatment outcome in cats with spontaneous hyperadrenocorticism. J Vet Int Med 2014; 28: 481-487.
  • 37 Zeugswetter FK, Rebuzzi L. Point-of-care β-hydroxybutyrate measurement for the diagnosis of feline diabetic ketoacidaemia. J Small Anim Pract 2012; 53: 328-331.