Nuklearmedizin 2011; 50(02): 74-82
DOI: 10.3413/Nukmed-0347-10-09
Original article
Schattauer GmbH

High resolution BrainPET combined with simultaneous MRI

Hochauflösende BrainPET kombiniert mit simultaner MRT
H. Herzog
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
,
K.-J. Langen
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
,
C. Weirich
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
,
E. Rota Kops
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
,
J. Kaffanke
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
,
L. Tellmann
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
,
J. Scheins
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
,
I. Neuner
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
2   Department of Psychiatry, Faculty of Medicine, JARA, RWTH Aachen University, Germany
,
G. Stoffels
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
,
K. Fischer
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
,
L. Caldeira
3   Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon, Portugal
,
H. H. Coenen
4   Institute of Neuroscience and Medicine – 5, Forschungszentrum Jülich, Germany
,
N. J. Shah
1   Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Germany
5   Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Germany
› Author Affiliations
Further Information

Publication History

received: 01 September 2010

accepted in revised form: 05 January 2011

Publication Date:
28 December 2017 (online)

Summary

After the successful clinical introduction of PET/CT, a novel hybrid imaging technology combining PET with the versatile attributes of MRI is emerging. At the Forschungszentrum Jülich, one of four prototypes available worldwide combining a commercial 3T MRI with a newly developed BrainPET insert has been installed, allowing simultaneous data acquisition with PET and MRI. The BrainPET is equipped with LSO crystals of 2.5 mm width and Avalanche photodiodes (APD) as readout electronics. Here we report on some performance characteristics obtained by phantom studies and also on the initial BrainPET studies on various patients as compared with a conventional HR+ PET-only scanner. Material, methods: The radiotracers [18F]-fluoroethyl- tyrosine (FET), [11C]-flumazenil and [18F]-FP-CIT were applied. Results: Comparing komthe PET data obtained with the BrainPET to those of the HR+ scanner demonstrated the high image quality and the superior resolution capability of the BrainPET. Furthermore, it is shown that various MR images of excellent quality could be acquired simultaneously with BrainPET scans without any relevant artefacts. Discussion, conclusion: Initial experiences with the hybrid MRI/BrainPET indicate a promising basis for further developments of this unique technique allowing simultaneous PET imaging combined with both anatomical and functional MRI.

Zusammenfassung

Nach der erfolgreichen klinischen Einführung von PET/CT zeichnet sich eine neue bildgebende Hybridtechnologie ab, die PET mit den umfangreichen Möglichkeiten der MRT kombiniert. Im Forschungszentrum Jülich wurde einer von vier weltweit verfügbaren Prototypen aufgestellt, die ein kommerzielles 3T MRT mit einem neu entwickelten BrainPET-Einsatz vereinen, so dass simultane Messungen von PET und MRT möglich sind. Der BrainPET ist mit 2,5 mm breiten LSO-Kristallen ausgestattet, die von Avalanche Photodioden (APD) ausgelesen werden. In dieser Arbeit beschreiben wir erstens einige mithilfe von Phantomuntersuchungen gemessene Leistungsparameter und zweitens erste BrainPET-Aufnahmen bei verschiedenen Patienten in Vergleich zu Messungen mit einem konventionellen HR+ PET. Material, Methoden: Als Radiotracer wurden [18F]-Fluorethyl-Tyrosin (FET), [11C]-Flumazenil und [18F]-FP-CIT eingesetzt. Ergebnisse: Der Vergleich der mit dem BrainPET gewonnenen Daten mit denen des HR+ PET macht die sehr gute Bildqualität und die verbesserte Auflösung des BrainPET deutlich. Weiterhin wird gezeigt, dass unterschiedliche MR-Sequenzen simultan mit den BrainPET-Aufnahmen durchgeführt werden können, wobei eine ausgezeichnete Qualität ohne relevante Beeinträchtigungen erzielt wird. Diskussion, Schlussfolgerungen: Die anfänglichen Erfahrungen mit dem hybriden MRT/BrainPET sind eine viel versprechende Basis für Weiterentwicklungen dieser einzigartigen Technik, die funktionelle PET-Bildgebung mit der anatomischen und funktionellen MRT kombiniert.

 
  • References

  • 1 Ashburner J, Friston KJ. Nonlinear spatial normalization using basic functions. Human Brain Mapping 1999; 7: 253-266.
  • 2 Beyer T, Townsend DW, Brun T. et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41: 1369-1379.
  • 3 Bolard G, Prior JO, Modolo L. et al. Performance comparison of two commercial BGO-based PET/CT scanners using NEMA NU 2–2001. Med Phys 2007; 34: 2708-2717.
  • 4 Brix G, Zaers J, Adam LE. et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 1997; 38: 1614-1623.
  • 5 Buck AK, Nekolla S, Ziegler S. et al. SPECT/CT. J Nucl Med 2008; 49: 1305-1319.
  • 6 Byars LG, Sibomana M, Burbar Z. et al. Variance reduction on randoms from delayed coincidence histograms for the HRRT. IEEE Nucl Sci Symp Conf Record. 2005: 2622-2626.
  • 7 De Jong HWAM, van Velden FHP, Kloet RW. et al. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 2007; 52: 1505-1526.
  • 8 Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 1991; 11: 690-699.
  • 9 Grazioso R, Zhang N, Corbeil J. et al. AP D-based PET detector for simultaneous PET/MR imaging. Nucl Instr Methods Phys Res A 2006; 569: 301-305.
  • 10 Hasegawa BH, Gingold EL, Reilly SM. et al. Description of a simultaneous emission-transmission CT system. Proc SPIE 1990; 1231: 50-60.
  • 11 Heiss WD. The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 2009; 36 (Suppl S1) S105-S112.
  • 12 Herzog H, Pietrzyk U, Shah NJ, Ziemons K. The Current State, challenges and perspectives of MR-PET. Neuro Image 2010; 49: 2072-2082.
  • 13 Herzog H, Tellmann L, Marx B. et al. First performance tests of the 3TMR- BrainPET. J Nucl Med 2009; 50 (Suppl. 02) 310P.
  • 14 Hoffman EJ, Huang SC, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 1981; 5: 391-400.
  • 15 Hoffman EJ, Phelps ME, Huang SC. Performance evaluation of a positron tomograph designed for brain imaging. J Nucl Med 1983; 24: 245-257.
  • 16 Holte S, Eriksson L, Dahlbom M. A preliminary evaluation of the Scanditronix PC2048–15B brain scanner. Eur J Nucl Med 1989; 15: 719-721.
  • 17 Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1994; 13: 601-609.
  • 18 Iida H, Zeniya T, Imabayashi E. et al. Three-dimensional realistic brain phantoms containing detailed grey matter and bone structures for nuclear medicine imaging. J Nucl Med 2009; 50 (Suppl. 02) 123P.
  • 19 Kazumata K, Dhawan V, Chaly T. et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J Nucl Med 1998; 39: 1521-1530.
  • 20 Langen KJ, Hamacher K, Weckesser M. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2006; 33: 287-294.
  • 21 Mazoyer B, Trebossen R, Deutch R. et al. Physical characteristics of the ECAT 953B/31: a new high resolution brain positron tomograph. IEEE Trans Med Imaging 1991; 10: 499-504.
  • 22 Michel C, Liu X, Sanabria S. et al. Weighted schemes applied to 3D-OSEM reconstruction in PET. IEEE Nucl Sci Symp Conf Record 1999; 3: 1152-1157.
  • 23 Mourik JE, van Velden FH, Lubberink M. et al. Image derived input functions for dynamic High Resolution Research Tomograph PET brain studies. Neuroimage 2008; 43: 676-686.
  • 24 Newport DF, Siegel SB, Swann BK. et al. QuickSilver: A flexible, extensible, and high-speed architecture for multi-modality. IEEE Nucl Sci Symp Conf Record. 2006: 2333-2334.
  • 25 Niimura K, Muzik O, Chugani DC. et al. [11C]flumazenil PET: activity images versus parametric images for the detection of neocortical epileptic foci. J Nucl Med 1999; 40: 1985-1991.
  • 26 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with magnetic resonance imaging improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687.
  • 27 Phelps ME, Hoffman EJ, Huang SC, Kuhl DE. ECAT: A new computerized tomographic imaging system for positron-emitting radiopharmaceuticals. J Nucl Med 1978; 19: 635-647.
  • 28 Pichler B, Kolb A, Nagele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010; 51: 333-336.
  • 29 Rota Kops E, Herzog H, Schmid A. et al. Performance characteristics of an eight-ring whole body PET scanner. J Comput Assist Tomogr 1990; 14: 437-445.
  • 30 Rota Kops E, Herzog H. Template based attenuation correction for PET in MR-PET scanners. IEEE NSS-MIC Record. 2008: 3786-3789.
  • 31 Schlemmer HP, Pichler B, Schmand M. et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 2008; 248: 1028-1035.
  • 32 Schmand M, Burbar Z, Corbeil J. et al. BrainPET: First human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 2007; 48: 310P.
  • 33 Spinks TJ, Jones T, Gilardi MC, Heather JD. Physical performance of the latest generation of commercial positron scanner. IEEE Trans Nucl Sci 1988; 35: 721-725.
  • 34 Surti S, Kuhn A, Werner ME. et al. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007; 48: 471-480.
  • 35 Thielemans K, Mustafovic S, Tsoumpas C. STIR: Software for tomographic image reconstruction release 2. IEEE NSS-MIC record. 2006: 2174-2176.
  • 36 Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 2003; 33: 193-204.
  • 37 Trébossen R, Comtat C, Brulon V. et al. Comparison of two commercial whole body PET systems based on LSO and BGO crystals respectively for brain imaging. Med Phys 2009; 36: 1399-1409.
  • 38 Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 2000; 47: 1587-1594.
  • 39 Wester HJ, Herz M, Weber W. et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999; 40: 205-212.
  • 40 Wienhard K, Schmand M, Casey ME. et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomography. IEEE Trans Nucl Sci 2002; 49: 104-110.