Subscribe to RSS
DOI: 10.3413/Nukmed-0631-13-10
Percutaneous thermal microwave ablation of thyroid nodules
Preparation, feasibility, efficiencyPerkutane thermische Mikrowellenablation von SchilddrüsenknotenPräparation, Machbarkeit, EffizienzPublication History
received:
31 October 2013
accepted in revised form:
11 March 2014
Publication Date:
02 January 2018 (online)
Summary
Microwave ablation (MWA) is a new minimal invasive method for thermal ablation of benign thyroid nodules. In contrast to well-established radiofrequency ablation (RFA), MWA offers several advantages with similarly successful results. There has not been any use of functional imaging with 99mTc-per- technetate and 99mTc-MIBI-scans as a mere qualitative analysis of this imaging in the field of MWA in Europe until now. The aim of this study has been to demonstrate the feasibility of MWA as well as the applicability of functional imaging to verify effectiveness with a centerspecific score. Patients, methods: 11 patients (5 women, 6 men, average age 62.3 years) with 18 benign thyroid nodules were treated. MWA was operated under local anesthesia with a system working in a wavelength field of 902 to 928 MHz (Avecure MWG881, MedWaves, Inc. San Diego, CA). Pre- and postablative scans were controlled by two specialists in nuclear medicine with longtime work experience. Results: A center specific functional imaging score (CSFIS) was defined, a decrease of 1.4 points at an average was noticeable (range 1-3 points). In 66.7% (n = 12) of all nodules the score decreased by 1 point, 27.8% (n = 5) by 2 points and 5.6% (n = 1) by 3 points. The treatment was well tolerated and no severe complications were observed. Conclusion: The preliminary data suggests that MWA is an effective method to treat benign thyroid nodules. Functional imaging is a promising technique for early verification of effectiveness of thermal ablation.
Zusammenfassung
Die Mikrowellenablation (MWA) ist eine neue minimal-invasive Methode im Bereich der Thermoablation benigner Schilddrüsenknoten. Im Gegensatz zur etablierten Radiofrequenz- ablation (RFA) bietet die MWA diverse Vorteile bei bisher ähnlich erfolgreichen Ergebnissen. In Europa wurde bisher keine Studie zu diesem Thema durchgeführt, in dieser Studie wurde erstmals auch funktionelle Bildgebung durch 99mTc-Pertechnetat und 99mTc-MIBI zur Überprüfung eingesetzt. Ziel dieser Studie ist die Darstellung der Durchführbarkeit der MWA sowie der Einsetzbarkeit funktioneller Bildgebung zur Effizienz-Prüfung. Patienten, Material, Methoden: Insgesamt wurden 11 Patienten (5 Frauen, 6 Männer, Durchschnittsalter 62,3 Jahre) mit 18 benignen Schilddrüsenknoten behandelt. Die MWA wurde unter Lokalanästhesie durchgeführt. Es wurde ein System, welches im Wellenlängenbereich von 902 bis 928 MHz arbeitet (Avecure MWG881, MedWaves, Inc. San Diego, CA), eingesetzt. Eine Kontrolle der prä- und postablativen Szintigramme wurde von zwei Nuklearmedizinern mit langjähriger Berufserfahrung durchgeführt. Ergebnisse: Ein zuvor definierter Center Specific Functional Imaging Score (CSFIS) verringerte sich im Mittel um 1,4 Punkte (Range 1-3 Punkte). In 66,7 % (n = 12) der Fälle verringerte sich der Score um 1 Punkt, in 27,8% (n = 5) um 2 Punkte und in 5,6% (n = 1) der Fälle um 3 Punkte. Die Behandlung wurde von allen Patienten gut toleriert, es traten keine schweren Komplikationen auf. Schlussfolgerung: Unsere Daten lassen darauf schließen, dass MWA eine effektive Technik zur Behandlung von benignen Schilddrüsenknoten darstellt. Die funktionelle Bildgebung kann zur frühzeitigen Überprüfung der Effektivität der Thermoablation eingesetzt werden.
-
References
- 1 Ahmed M, Brace CL, Lee FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011; 258: 351-369.
- 2 Arbab AS, Koizumi K, Toyama K. et al. Technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 uptake in rat myocardial cells. J Nucl Med 1998; 39: 266-271.
- 3 Baek JH, Lee JH, Sung JY. et al. Complications encounterd in the treatment of benign thyroid nodules with US-guided radiofrequency ablation. Radiology 2012; 262: 335-342.
- 4 Banik S, Bandyopadhyay S, Ganguly S. Bioeffects of microwave – a brief review. Bioresour Technol 2003; 87: 155-159.
- 5 Brace CL. Microwave ablation technology: What every user should know. Curr Probl Diagn Radiol 2009; 38: 61-67.
- 6 Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?. Curr Probl Diagn Radiol 2009; 38: 135-143.
- 7 Brace CL. Microwave tissue ablation: Biophysics, technology and applications. Crit Rev Biomed Eng 2010; 38: 65-78.
- 8 Blank W, Braun B. Sonografie der Schilddrüse. Teil 1 – Untersuchungstechnik, Normalbefund, Struma diffusa und Struma nodosa. Ultraschall Med 2007; 28: 554-575.
- 9 Correa-Gallego C, Karkar AM, Monette S. et al. Intraoperative ultrasound and tissue elastography measurements do not predict the size of hepatic microwave ablations. Acad Radiol 2014; 21: 72-78.
- 10 Christou N, Mathonnet M. Complications after total thyroidectomy. J Visc Surg 2013; 150: 249-256.
- 11 Dietlein M, Dressler J, Eschner W. et al. Verfahrensanweisung für die Schilddrüsenszinti-graphie (Version 3). Nuklearmedizin 2007; 46: 203-205.
- 12 Dietlein M, Dressler J, Grünwald F. et al. Leitlinie zur Radioiodtherapie (RIT) bei benignen Schilddrüsenerkrankungen (Version 4). Nuklearmedizin 2007; 46: 220-223.
- 13 Etzel M, Happel C, Von Müller F. et al. Palpation and elastography of thyroid nodules in comparison. Nuklearmedizin 2013; 52: 97-100.
- 14 Feng B, Liang P, Cheng Z. et al. Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules: experimental and clinical studies. Eur J Endocrinol 2012; 166: 1031-1037.
- 15 Guglielmi R, Pacella CM, Bianchini A. et al. Percutaneous ethanol injection treatment in benign thyroid lesions: role and efficacy. Thyroid 2004; 14: 125-131.
- 16 Ha EJ, Baek JH, Lee JH. et al. Clinical Significance of vagus nerve variation in radiofrequency ablation of thyroid nodules. Eur Radiol 2011; 21: 2151-2157.
- 17 Happel C, Truong PN, Bockisch B. et al. Colour-coded duplex-sonography versus scintigraphy. Can scintigraphy be replaced by sonography for diagnosis of functional thyroid autonomy?. Nuklearmedizin 2013; 52: 186-191.
- 18 Jeong WK, Baek JH. et al. Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. Eur Radiol 2008; 18: 1244-1250.
- 19 Kim JH, Lee HK, Lee JH. et al. Efficacy of Sonographically guided percutaneous ethanol injection for treatment of thyroid cysts versus solid nodules. Am J Roentgenol 2003; 180: 1723-1726.
- 20 Kim Y-S, Rhim H, Tae K. et al. Radiofrequency ablation of benign cold thyroid nodules: Initial clinical experience. Thyroid 2006; 16: 361-366.
- 21 Kogai T, Brent GA. The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol Ther 2012; 135: 355-370.
- 22 Korkusuz H, Happel C, Grünwald F. Mikrowellen-ablation (MWA) in Kombination mit der Radiojodtherapie (RIT) bei der Behandlung von Schilddrüsenknoten. Nuklearmedizin 2013; 52: A89.
- 23 Korkusuz H, Happel C, Grünwald F. Ultrasound guided percutaneous microwave ablation of hypofunctional thyroid nodules: evaluation by scintigraphic 99mTc-imaging. Nuklearmedizin 2013; 52: N68.
- 24 Leidig-Bruckner G, Cichorowski G, Sattler P. et al. Evaluation of thyroid nodules-combined use of WmTc-methylisobutylnitrile scintigraphy and aspiration cytology to assess risk of malignancy and stratify patients for surgical or nonsurgical therapya retrospective cohort study. Clin Endocrinol 2012; 76: 749-758.
- 25 Meller J, Becker W. The continuing importance of thyroid scintigraphy in the era of high-resolution ultrasound. Eur J Nucl Med 2002; 29: 425-438.
- 26 Na DG, Lee JH, Jung SL. et al. Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: Consensus statement and recommendations. Korean J Radiol 2012; 13: 117-125.
- 27 Nagarajah J, Farahati F, Görges R. et al. Success rate of repeated fine needle aspiration biopsy of clinically suspicious thyroid nodules. Nuklearmedizin 2012; 51: 116-118.
- 28 Pareek G, Wilkinson ER, Bharat S. et al. Elastographic measurements of in-vivo radiofrequency ablation lesions of the kidney. J Endourol 2006; 20: 959-964.
- 29 Park KW, Shin JH, Han B. et al. Inoperable symptomatic recurrent thyroid cancers: preliminary result of radiofrequency ablation. Ann Surg Oncol 2011; 18: 2564-2568.
- 30 Reiners C, Schumm-Draeger P-M, Geling M. et al. Schilddrüsenultraschallscreening (Initiative Papillon). Internist 2003; 44: 412-419.
- 31 Ross DS. Nonpalpabel thyroid nodules – Managing an epidemic. J Clin Endocrinol Metab 2002; 87: 1938-1940.
- 32 Schicha H, Hellmich M, Lehrmacher W. et al. Should all patients with thyroid nodules > 1 cm undergo fine-needle aspiration biopsy?. Nuklearmedizin 2009; 48: 79-83.
- 33 Schmid KW, Sheu S-Y, Görges R. et al. Tumoren der Schilddrüse. Pathologe 2003; 24: 357-372.
- 34 Shamis Y, Taube A, Mitik-Dineva N. et al. Specific electromagnetic effects of microwave radiation on Escherichia coli. Appl Environ Microbiol 2011; 77: 3017-3023.
- 35 Shin JH, Baek JH, Ha EJ, Lee JH. Radiofrequency ablation of thyroid nodules: basic principles and clinical application. Int J Endocrinol. 2012 DOI: 10.1155/2012/919650.
- 36 Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: Principles and applications. Radiographics 2005; 25: 69-83.
- 37 Spiezia S, Garberoglio R, Milone F. et al. Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid 2009; 19: 219-225.
- 38 Tarantino L, Francica G, Sordelli I. et al. Percutaneous ethanol injection of hyperfunctioning thyroid nodules: Long-term follow-up in 125 patients. Am J Roentgenol 2008; 190: 800-808.
- 39 Verbung FA, Luster M, Lassmann M, Reiners C. 131I therapy in patients with benign thyroid disease does not conclusively lead to a higher risk of subsequent malignancies. Nuklearmedizin 2011; 50: 93-99.
- 40 Vogl TJ, Mack M, Eichler K. et al. Interventionelle Thermoablation von malignen Lebertumoren und Lebermetastasen: Vergleich von Radiofrequenz-ablation (RFA), laserinduzierter Thermotherapie (LITT) und Mikrowellenablation (MWA). Hessisches Ärzteblatt 2011; 72: 606-615.
- 41 Völzke H, Lüdemann J, Robinson DM. et al. The prevalence of undiagnosed thyroid disorders in a previously iodine-deficient area. Thyroid 2003; 13: 803-810.
- 42 Wartofsky L. Radioiodine therapy for Graves’ disease: Case selection and restrictions recommended to patients in North America. Thyroid 1997; 7: 213-216.
- 43 Wiggermann P, Jung EM, Glöckner S. et al. Realtime elastography of hepatic thermal lesions in vitro: histopathological correlation. Ultraschall in Med 2012; 33: 170-174.
- 44 Wood MA, Shaffer KM, Ellenbogen AL, Ownby ED. Microbubbles during radiofrequency catheter ablation: composition and formation. Heart rhythm 2005; 2: 397-403.
- 45 Yue W, Wang S, Wang B. et al. Ultrasound guided percutaneous microwave ablation of benign thyroid nodules: Safety and imaging follow-up in 222 patients. Eur J Radiol 2012; 82: e11-e16.
- 46 Zhou Z, Sheng L, Wu S. et al. Ultrasonic evaluation of microwave-induced thermal lesions based on wavelet analysis of mean scatterer spacing. Ultrasonics 2013; 53: 1325-1331.