Subscribe to RSS
DOI: 10.3413/Nukmed-0742-15-05
Dynamic 68Ga-DOTATOC PET/CT and static image in NET patients
Correlation of parameters during PRRTDynamische und statische 68Ga-DOTATOC-PET/CT bei Patienten mit NETKorrelation der Parameter während der PRRTPublication History
received:
21 May 2015
accepted in revised form:
12 January 2016
Publication Date:
06 March 2018 (online)
Summary
Purpose: To investigate the relationship between the dynamic parameters (Ki) and static image-derived parameters of 68Ga-DOTATOC-PET, to determine which static parameter best reflects underlying somatostatin-receptor-expression (SSR) levels on neuroendocrine tumours (NETs). Patients, methods: 20 patients with metastasized NETs underwent a dynamic and static 68Ga-DOTATOC-PET before PRRT and at 7 and 40 weeks after the first administration of 90Y-DOTATOC (in total 4 cycles were planned); 175 lesions were defined and analyzed on the dynamic as well as static scans. Quantitative analysis was performed using the software PMOD. One to five target lesions per patient were chosen and delineated manually on the baseline dynamic scan and further, on the corresponding static 68Ga-DOTATOC-PET and the dynamic and static 68Ga-DOTATOC-PET at the other time-points; SUVmax and SUVmean of the lesions was assessed on the other six scans. The input function was retrieved from the abdominal aorta on the images. Further on, Ki was calculated using the Patlak-Plot. At last, 5 reference regions for normalization of SUVtumour were delineated on the static scans resulting in 5 ratios (SUVratio). Results: SUVmax and SUVmean of the tumoural lesions on the dynamic 68Ga-DO-TATOC-PET had a very strong correlation with the corresponding parameters in the static scan (R²: 0.94 and 0.95 respectively). SUVmax, SUVmean and Ki of the lesions showed a good linear correlation; the SUVratios correlated poorly with Ki. A significantly better correlation was noticed between Ki and SUVtumour(max and mean) (p < 0.0001). Conclusions: As the dynamic para meter Ki correlates best with the absolute SUVtumour, SUVtumour best reflects underlying SSR-levels in NETs.
Zusammenfassung
Das Ziel der Studie war das Verhältnis zwischen dem dynamischen Parameter (Ki) und statischen Parametern der 68Ga-DOTATOC-PET zu untersuchen und den statischen Parameter zu definieren, der am besten mit der Somatostatinrezeptor (SSR) Expression von neuroendokrinen Tumoren (NET) korreliert. Patienten und Methoden: 20 Patienten mit metastasierten NET erhielten eine dynamische und statische 68Ga-DOTATOC-PET vor der ersten PRRT und 7 und 40 Wochen nach der ersten Administration von 90Y-DOTATOC (insgesamt wurden 4 Zyklen geplant); 175 Läsionen wurden auf den statischen und dynamischen Bildern definiert und ausgewertet. Die quantitative Analyse wurde mit der Software PMOD durchgeführt. Eine bis fünf Zielläsionen wurden pro Patient im ersten dynamischen Scan ausgewählt, mit einer VOI versehen, welche dann auf die weiteren dynamischen und statischen Scans transferiert wurde; sowohl SUVmax als auch SUVmean wurden bestimmt. Die Input Funktion wurde aus der im Field-of-view liegenden Aorta generiert. Ki wurde mit Hilfe des Patlak-Plots berechnet. Zuletzt wurden 5 Referenzregionen für die Normalisation des SUVtumo auf den statischen Scans bestimmt, zur Bestimmung von 5 Verhältnissen (SUVratio). Ergebnisse: SUVmax und SUVmean der Tumorläsionen inden dynamischen 68Ga-DOTATOC-PET zeigten eine sehr starke Korrelation mit den entsprechenden Parametern in den statischen Scans (R²: 0,94 bzw. 0,95). SUVmax, SUVmean und Ki der Läsionen zeigte eine gute lineare Korrelation; die verschiedenen SUVratios korrelierten auf sehr niedrigem Niveau mit Ki. Eine signifikant bessere Korrelation zeigte sich zwischen Ki und SUVtumour(max and mean) (p < 0.0001). Schlussfolgerung: Der dynamische Parameter Ki korreliert am besten mit dem absoluten SUVtumour. SUVtumour reflektiert am besten den Level der SSR-Expression in NET.
-
References
- 1 Armani C, Catalani E, Balbarini A. et al. Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages. J Leukoc Biol 2007; 81: 845-855.
- 2 Boellaard R, Krak NC, Hoekstra OS. et al. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004; 45: 1519-1527.
- 3 Buchmann I, Henze M, Engelbrecht S. et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2007; 34: 1617-1626.
- 4 Cascini GL, Cuccurullo V, Mansi L. The non tumour uptake of 111In-octreotide creates new clinical indications in benign diseases, but also in oncology. Q J Nucl Med Mol Imaging 2010; 54: 24-36.
- 5 Ferone D, Pivonello R, Kwekkeboom DJ. et al. Immunohistochemical localization and quantitative expression of somatostatin receptors in normal human spleen and thymus: Implications for the in vivo visualization during somatostatin receptor scintigraphy. J Endocrinol Invest 2012; 35: 528-534.
- 6 Gabriel M, Decristoforo C, Kendler D. et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007; 48: 508-518.
- 7 Haug AR, Auernhammer CJ, Wangler B. et al. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med 2010; 51: 1349-1356.
- 8 Henze M, Schuhmacher J, Hipp P. et al. PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 2001; 42: 1053-1056.
- 9 Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S. et al. Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 2005; 46: 763-769.
- 10 Hofmann M, Maecke H, Borner R. et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001; 28: 1751-1757.
- 11 Koukouraki S, Strauss LG, Georgoulias V. et al. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 2006; 33: 1115-1122.
- 12 Kowalski J, Henze M, Schuhmacher J. et al. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 2003; 5: 42-48.
- 13 Meyer GJ, Macke H, Schuhmacher J. et al. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging 2004; 31: 1097-1104.
- 14 Modlin IM, Oberg K, Chung DC. et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008; 9: 61-72.
- 15 Ohtake T, Kosaka N, Watanabe T. et al. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. J Nucl Med 1991; 32: 1432-1438.
- 16 Pisarek H, Pawlikowski M, Kunert-Radek J. et al. SSTR1 and SSTR5 subtypes are the dominant forms of somatostatin receptor in neuroendocrine tumors. Folia Histochem Cytobiol 2010; 48: 142-147.
- 17 Putzer D, Gabriel M, Henninger B. et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 2009; 50: 1214-1221.
- 18 Reubi JC, Waser B, Schaer JC. et al. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 2001; 28: 836-846.
- 19 Reubi JC, Schar JC, Waser B. et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000; 27: 273-282.
- 20 Severi S, Nanni O, Bodei L. et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2013; 40: 881-888.
- 21 Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991; 32: 623-648.
- 22 Sundin A, Garske U, Orlefors H. Nuclear imaging of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab 2007; 21: 69-85.
- 23 Van Binnebeek S, Karges W, Mottaghy FM. Functional imaging of neuroendocrine tumors. Methods Mol Biol 2011; 727: 105-122.
- 24 Van den Hoff J, Oehme L, Schramm G. et al. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. EJNMMI Res 2013; 3: 77.
- 25 Weckbecker G, Lewis I, Albert R. et al. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2003; 2: 999-1017.
- 26 Yap JT, Guo M, Locascio T. et al. Comparison of standardized measurement of SUVmax versus a threshold-based SUVmean in cancer response assessment using GDG-PET. J Nucl Med 2010; 51 (Suppl. 02) 1178.