Nuklearmedizin 2007; 46(06): 271-280
DOI: 10.3413/nukmed-0072
Radiotracers for amyloid plaques
Schattauer GmbH

Radiosynthesis and evaluation of [11C]BTA-1 and [11C]3'-Me-BTA-1 as potential radiotracers for in vivo imaging of β-amyloid plaques

Radiosynthese und Evaluation von [11C]BTA-1 und [11C]3'-Me-BTA-1 als potenzielle Radiotracer fur die In-vivo-Bildgebung von β-Amyloid-Plaques
B. Neumaier*
1   Departments of Nuclear Medicine
,
S. Deisenhofer
1   Departments of Nuclear Medicine
,
D. Fürst
1   Departments of Nuclear Medicine
,
C. A. F. von Arnim
2   Departments of Neurology, University Hospital Ulm
,
S. Thees
1   Departments of Nuclear Medicine
,
A. K. Buck
1   Departments of Nuclear Medicine
,
G. Glatting
1   Departments of Nuclear Medicine
,
G. B. Landwehrmeyer
1   Departments of Nuclear Medicine
,
B. J. Krause
1   Departments of Nuclear Medicine
,
H. D. Müller
3   Department of Neuropathology, University of Mainz, Germany
,
C. Sommer
3   Department of Neuropathology, University of Mainz, Germany
,
S. N. Reske
1   Departments of Nuclear Medicine
,
F. M. Mottaghy*
1   Departments of Nuclear Medicine
› Author Affiliations
Further Information

Publication History

Received: 26 December 2006

accepted in revised form: 04 June 2007

Publication Date:
28 December 2017 (online)

Summary

Aim: To evaluate the in vitro and in vivo characteristics of [N-methyl-11C]2-(4'-(methylaminophenyl)-benzothiazole ([11C]BTA-1) as well as [N-methyl-11C]2-(3'-methyl- 4'-(methylamino)phenyl)-benzothiazole ([11C]3'-Me- BTA-1) as diagnostic markers of amyloid-β (Aβ) in Alzheimer's disease (AD). Material, methods: Brain uptake and clearance was determined in wild-type mice. Binding affinities (Ki) of [11C]BTA-1 and [11C]3'-Me-BTA-1 for aggregated Aβ(1-40) fibrils were assessed. Autoradiography was performed on brain sections of AD patients. To demonstrate binding specificity in vivo BTA-1 was injected i.p. in transgenic mice (Tg2576). Brain sections were analysed consecutively. Additionally, a [11C]BTA-1 PET study of an AD patient and a healthy control was performed. Results: In mice brain uptake and clearance of [11C]BTA-1 is compatible with the half life of 11C (2 min: 12.7 % ID/g; 30 min: 4.6% ID/g). In contrast clearance rate of [11C]3'-Me- BTA-1 is too slow (2 min 4% ID/g; 30 min 12% ID/g) to achieve sufficient clearance of free and non specifically bound radioactivity. Ki of [11C]BTA-1 is 11 nmol/l and that of [11C]3'-Me-BTA-1 27 nmol/l. Both radioligands label Aβ selectively and specifically in AD patients and transgenic mice in vitro. The in vivo stained brain sections show a labelling of Aβ plaques. The AD patient has a higher prefrontal, parietal and striatal [11C]BTA-1 accumulation than the healthy control. Metabolite analysis revealed approximately 75% intact [11C]BTA-1 after 30min in plasma.[ 11C]BTA-1 is favourable for in vivo imaging of Aβ due to its rapid brain entry, sufficient clearance and good binding affinity for Aβ. Conclusion: The ability to label Aβ plaques in vivo in human subjects supports the suitability of [11C]BTA-1 as a plaque imaging agent.

Zusammenfassung

Das Ziel dieser Studie war die Evaluierung der in vitro und in vivo Eigenschaften von [11C]BTA-1 und [11C]3'-Me-BTA-1 als diagnostische Marker von β-Amyloid-Plaques bei der Demenz vom Alzheimertyp (DAT). Material, Methoden: Die Hirnaufnahme und -auswaschung der Radiopharmaka wurden in Wildtyp-Mausen untersucht. Die Bindungsaffinitat (Ki) von [11C]BTA-1 und [11C]3'-Me-BTA-1 an aggregierte Aβ (1-40)-Fibrillen wurde bestimmt. Eine Autoradiographie wurdeanGehirnschnittenvonDAT- Patientendurchgefuhrt.ZurDarstellung der Bindungsspezifitat in vivo wurde BTA-1 i.p. in transgene Mause injiziert (Tg2576). Nachfolgend wurden Gehirnschnitte analysiert. Zusatzlich wurde eine [11C]BTA-1-PET Untersuchung bei einem DAT-Patienten und einer gesunden Kontrollperson durchgefuhrt. Ergebnisse: Bei Mausen ist die Gehirnaufnahme und Auswaschung von [11C]BTA-1 mit der physikalischen Halbwertszeit von 11C (2 min: 12.7 % ID/g; 30 min: 4.6% ID/g) kompatibel. Im Gegensatz dazu ist die Auswaschung von [11C]3'-Me-BTA-1 zu langsam (2 min 4% ID/g; 30min12%ID/g),umeinausreichendesAuswaschenvonfreier nicht gebundener Radioaktivitat aus dem Gehirn zu gewahrleisten. Der Ki von [11C]BTA-1 wurde zu 11 nmol/l und von [11C]3'-Me-BTA-1 zu 27 nmol/l bestimmt. Beide Radioliganden binden selektiv und spezifisch an Aβ bei Hirnschnitten von DAT-Patienten und transgenen Mausen. Die in vivo markierten Hirnschnitte zeigen ebenfalls eine Bindung von BTA-1 an Aβ- Plaques. Der DAT-Patient wies eine hohere prafrontale, parietale, cingulare und striatale [11C]BTA-1-Akkumulation im Vergleich zur gesunden Kontrollperson auf. Die Plasma-Metabolitenanalyse fur [11C]BTA-1 zeigte etwa 75% intaktes [11C]BTA-1 nach 30 min. Schlussfolgerung: [11C]BTA-1 ist geeignet fur die In-vivo-Darstellung von Aβ-Plaques auf Grund des schnellen Gehirneintritts, der ausreichenden Clearance und der guten Bindungsaffinitat fur Aβ. Insbesondere die Fahigkeit Aβ-Plaques in vivo darzustellen, unterstutzt die Eignung von [11C]BTA-1 fur die bildgebende Diagnostik.

* contributed equally to the study


 
  • References

  • 1 Agdeppa ED, Kepe V, Liu J. et al. Binding characteristics of radiofluorinated 6-dialkylamino- 2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta- amyloid plaques in Alzheimer's disease. J Neurosci. 2001 21. RC189.
  • 2 Alzheimer A. über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie und psychisch-gerichtliche Medizin 1907; 64: 146-148.
  • 3 Blessed G, Tomlinson BE, Roth M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 1968; 114: 797-811.
  • 4 Brix G, Zaers J, Adam LE. et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 1997; 38: 1614-1623.
  • 5 Citron M, Oltersdorf T, Haass C. et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 1992; 360: 672-674.
  • 6 Dishino DD, Welch MJ, Kilbourn MR. et al. Relationship between lipophilicity and brain extraction of 11C-labeled radiopharmaceuticals. J Nucl Med 1983; 24: 1030-1038.
  • 7 Folstein MF, Folstein SE, McHugh PR. "Minimental state". A practical method for grading the cognitive state of patients for the clinician. J PsychiatrRes 1975; 12: 189-198.
  • 8 Gron G, Bittner D, Schmitz B. et al. Subjective memory complaints: objective neural markers in patients with Alzheimer's disease and major depressive disorder. Ann Neurol 2002; 51: 491-498.
  • 9 Iwata R, Pascali C, Bogni A. et al. A simple loop method for the automated preparation of [11C]- raclopride from [11C]methyl triflate. Applied Radiation and Isotopes 2001; 55: 17-22.
  • 10 Kaneko I, Tutumi S. Conformations of ^-Amyloid in Solution. J. Neurochem 1997; 68: 437-439.
  • 11 Klunk WE, Debnath ML, Pettegrew JW. Small molecule beta-amyloid probes which distinguish homogenates of Alzheimer's and control brains. Biol. Psych 1994; 35: 627-634.
  • 12 Klunk WE, Wang Y, Huang GF. et al. Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci 2001; 69: 1471-1484.
  • 13 Klunk WE, Wang Y, Huang GF. et al. The binding of 2-(4'-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 2003; 68: 438-439.
  • 14 Klunk WE, Engler H, Nordberg A. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004; 55: 306-319.
  • 15 Klunk WE, Lopresti BJ, Ikonomovic MD. et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer's disease brain but not in transgenic mouse brain. J Neurosci 2005; 25: 10598-10606.
  • 16 Kung M-P, Hou C, Zhuang Z-P. et al. Characterization of IMPY as a potential imaging agent for beta-amyloid plaques in double transgenic PSAPP mice. Eur J Nucl Med Mol Imaging 2004; 31: 1136-1145.
  • 17 Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 1980; 23: 682-684.
  • 18 Lopez OL, Becker JT, Klunk W. et al. Research evaluation and diagnosis of possible Alzheimer's disease over the last two decades: II. Neurology 2000; 55: 1863-1869.
  • 19 Lopresti BJ, Klunk WE, Mathis CA. et al. Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: A comparative analysis. J Nucl Med 2005; 46: 1959-1972.
  • 20 Mathis CA, Bacskai BJ, Kajdasz ST. et al. A lipo- philic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg Med Chem Lett 2002; 12: 295-298.
  • 21 Mathis CA, Wang Y, Holt DP. et al. Synthesis and evaluation of 11C-labeled 6-substituted 2-aryl- benzothiazoles as amyloid imaging agents. J Med Chem 2003; 46: 2740-2754.
  • 22 Mathis CA, Wang Y, Klunk WE. Imaging beta- amyloid plaques and neurofibrillary tangles in the aging human brain. Curr Pharm Des 2004; 10: 1469-1492.
  • 23 McKhann G, Drachman D, Folstein M. et al. Clinical diagnosis of Alzheimer's disease: report ofthe NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34: 939-944.
  • 24 Parsey RV, Sokol LO, Belanger MJ. et al. Amyloid plaque imaging agent [11C]-6-OH-BTA-1: biodistribution and radiation dosimetry in baboon. Nucl Med Commun 2005; 26: 875-880.
  • 25 Price JC, Klunk WE, Lopresti BJ. et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005; 25: 1528-1547.
  • 26 Quarantelli M, Berkouk K, Prinster A. et al. Integrated software for the analysis of brain PET/ SPECT studies with partial-volume-effect correction. J Nucl Med 2004; 45: 192-201.
  • 27 Ravaglia G, Forti P, Maioli F. et al. Incidence and etiology of dementia in a large elderly Italian population. Neurology 2005; 64: 1525-1530.
  • 28 Scheuner D, Eckman C, Jensen M. et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 1996; 2: 864-870.
  • 29 Schmechel DE, Saunders AM, Strittmatter WJ. et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipopro- tein E genotype in late-onset Alzheimer disease. ProcNatlAcadSciUSA. 1993; 90: 9649-9653.
  • 30 Selkoe DJ. The genetics and molecular pathology of Alzheimer's disease: roles of amyloid and the presenilins. Neurol Clin 2000; 18: 903-922.
  • 31 Selkoe DJ. Alzheimer's disease is a synaptic failure. Science 2002; 298: 789-791.
  • 32 Selkoe DJ. Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol 2004; 6: 1054-1061.
  • 33 Shi DF, Bradshaw T, Wrigley S. et al. Antitumor benzothiazoles. 3. Synthesis of 2-(4-amino- phenyl)benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J Med Chem 1996; 39: 3375-3384.
  • 34 Shoghi-Jadid K, Small GW, Agdeppa ED. et al. Localization of neurofibrillary tangles and beta- amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 2002; 10: 24-35.
  • 35 Shoghi-Jadid K, Barrio JR, Kepe V. et al. Imaging beta-amyloid fibrils in Alzheimer's disease: a critical analysis through simulation of amyloid fibril polymerization. Nucl Med Biol 2005; 32: 337-351.
  • 36 Solbach C, Uebele M, Reischl G. et al. Efficient radiosynthesis of carbon-11 labelled uncharged Thioflavin T derivatives using [11C]methyl triflate for ß-amyloid imaging in Alzheimer's Disease with PET. Applied Radiation and Isotopes 2005; 62: 591-596.
  • 37 Thees S, Neumaier B, Glatting G. et al. Radiation dosimetry and biodistribution of the amyloid imaging tracer [UC]BTA-1 in humans. Nuklearmedizin 2007; 46: 175-180.
  • 38 Toyama H, Ye D, Ichise M. et al. PET imaging of brain with the ß-amyloid probe, [11C]6-OH- BTA-1, in a transgenic mouse model of Alzheimer's disease. Eur J Nucl Med Mol Imaging 2005; 32: 593-600.
  • 39 Verhoeff NP, Wilson AA, Takeshita S. et al. In-vivo imaging of Alzheimer disease beta-amyloid with [nC]SB-13 PET. Am J Geriatr Psychiatry 2004; 12: 584-595.
  • 40 Wang Y, Mathis CA, Huang GF. et al. Effects of lipophilicity on the affinity and nonspecific binding of iodinated benzothiazole derivatives. J Mol Neurosci 2003; 20: 255-260.
  • 41 Ye L, Morgenstern JL, Gee AD. et al. Delineation of positron emission tomography imaging agent binding sites on beta-amyloid peptide fibrils. J Biol Chem 2005; 280: 23599-23604.