Nuklearmedizin 2008; 47(03): 120-126
DOI: 10.3413/nukmed-0129
Originalarbeiten - Original Articles
Schattauer GmbH

Geometric models in dosimetry of thyroid remnant mass

Geometrische Modelle zur Dosimetrie der Schilddrüsenrestmasse
D. Grošev
1   Clinical Department of Nuclear Medicine and Radiation Protection, Clinial Hospital Center Zagreb, Zagreb, Croatia
,
S. Lončarić
1   Clinical Department of Nuclear Medicine and Radiation Protection, Clinial Hospital Center Zagreb, Zagreb, Croatia
,
D. Huić
1   Clinical Department of Nuclear Medicine and Radiation Protection, Clinial Hospital Center Zagreb, Zagreb, Croatia
,
D. Dodig
1   Clinical Department of Nuclear Medicine and Radiation Protection, Clinial Hospital Center Zagreb, Zagreb, Croatia
› Author Affiliations
Further Information

Publication History

Received: 01 June 2007

accepted in revised form: 23 October 2007

Publication Date:
04 January 2018 (online)

Summary

Aim: Absorbed dose to thyroid remnant tissue after 131I ablation becomes mass/size-dependent. This is a direct consequence of the small remnant size and radiation escape starts to be relevant. The self-absorbed fraction becomes mass/size-dependent. We have used Monte Carlo simulations to investigate the influence of the thyroid remnant shape upon the absorbed fraction calculation. Methods: Thyroid residue was modeled using spherical, cylindrical and elliptical shapes. Uniform beta activity distribution and unit density medium (water) within a remnant was assumed. For each of the geometrical models beta self-absorbed fraction (ϕγ) was calculated using Monte Carlo codes, while the mean absorbed dose per unit cumulated activity (Sγ) was calculated using MIRD formalism. Results: For spherical objects Ömono for mean beta energy (E = 0.182 MeV) of 131I is always greater than ϕγ calculated for the complete beta spectrum. For spheres having diameters 2–6 mm and assumption ϕγ=1, Sγ is overestimated by 11–37%. For cylinder and prolate spheroid of the same length and thickness, Sγ for cylinder is 30% smaller because of the greater mass. Similarly, elliptical cylinder and general ellipsoid of the same length and the same perpendicular dimensions (width and breadth), have similar ϕγ, while Sγ for elliptical cylinder is correspondingly smaller. Conclusion: For accurate dosimetry of thyroid remnants having masses <1 g and chordal lengths <1 cm it is necessary to calculate ϕγ for the full beta spectrum, or Sγ will be overestimated. The shape of the remnant may also be important since elongated non-spherical objects may also have ϕγ < 1.

Zusammenfassung

Ziel: Die absorbierte Dosis fur das Restgewebe der Schilddruse nach 131I-Ablation hangt von Masse und Grose ab. Dies ist die direkte Konsequenz der kleinen Restgrose. Der Strahlungsverlust wird dadurch relevant. Wir haben Monte- Carlo-Simulationen verwendet, um den Einfluss der Form des Schilddrusenrestgewebes auf die absorbierte Dosis zu untersuchen. Methoden: Der Schilddrusenrest wurde durch spharische, zylindrische und elliptische Formen modelliert. Fur den Schilddrusenrest wurde eine gleichformige Verteilung der β-Aktivitat und ein Medium mit Einheitsdichte (Wasser) angenommen. Fur jedes der geometrischen Modelle wurde eine β-Selbstabsorptionsfraktion (ϕβ) mithilfe von Monte-Carlo-Codes berechnet. Die mittlere absorbierte Dosis pro Zerfall (Sβ) wurde mit dem MIRD-Formalismus berechnet. Ergebnisse: Fur spharische Objekte ist ϕmono berechnet fur die mittlere Betaenergie (E = 0.182 MeV) des 131I immer groser als ϕβ berechnet fur das gesamte Betastrahlenspektrum. Fur Kugeln mit Durchmessern von 2.6 mm und die Annahme ϕβ=1 wird Sβ um 11.37% uberschatzt. Fur Zylinder und prolate Spharoide der gleichen Lange und Dicke ist Sβ fur den Zylinder auf Grund der groseren Masse 30% kleiner. Gleichsam haben elliptische Zylinder und allgemeine Ellipsoide gleicher Grose und gleiche ausere Dimensionen (Breite und Hohe) ahnliche ϕβ, wahrend Sβ fur elliptische Zylinder entsprechend kleiner ist. Schlussfolgerung: Fur eine akkurate Dosimetrie des Schilddrusenrests mit Massen <1 g und Sehnenlangen <1 cm ist es notwendig, ϕβ fur das gesamte β-Spektrum zu berechnen, da sonst Sβ uberschatzt wird. Die Form des Restgewebes kann wichtig sein, weil gestreckte nicht spharische Objekte auch ein ϕβ < 1 aufweisen konnen.

 
  • References

  • 1 Arslan N, Ilgan S, Serdengecti M. et al. Post-surgical ablation of thyroid remnants with high-dose 131I in patients with differentiated thyroid carcinoma. Nucl Med Commun 2001; 22: 1021-1027.
  • 2 Bardies M, Chatal JF. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres. Phys Med Biol 1994; 39: 961-981.
  • 3 Berger MJ. Beta-ray dosimetry calculations with the use of point kernels. In: Medical radio-nuclides: radiation dose and effects. U.S. Atomic Energy Commission, Oak Ridge 1970; 63-86.
  • 4 Berger MJ. Distribution of absorbed dose around point sources of electrons and beta particles in water and other media. MIRD Pamphlet No. 7. J Nucl Med 1971; (suppl 5) 5-23.
  • 5 Comtois R, Theirault C, Del Vecchio P. Assessment of the efficacy of iodine-131 for thyroid ablation. J Nucl Med 1993; 34: 1927-1930.
  • 6 Endo S, Nitta Y, Ohtaki M. et al. Estimation of dose absorbed fraction for 131I-beta rays in rat thyroid. J Radiat Res 1998; 39: 223-230.
  • 7 Flower MA, Schlesinger T, Hinton PJ. et al. Radiation dose assessment in radioiodine therapy. 2. Practical implementation using quantitative scanning and PET, with initial results on thyroid carcinoma. Radiother Oncol 1989; 15: 345-357.
  • 8 Flynn A, Green A, Pedley R. et al. A mouse model for calculating the absorbed beta-particle dose from 131I and 90Y- labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor. Radiat Res 2001; 156: 28-35.
  • 9 Fratkin MJ, Newsome Jr HH, Sharpe Jr AR. et al. Cervical distribution of iodine 131 following total thyroidectomy for thyroid cancer. Arch Surg 1983; 118: 864-867.
  • 10 Grosev D, Medvedec M, Loncaric S. et al. Determination of small objects from pinhole scinti- garms. Nucl Med Commun 1998; 19: 679-688.
  • 11 Hackshaw A, Harmer C, Mallick U. et al. 131I activity for remnant ablation in patients with differentiated thyroid cancer: A systematic review. J Clin Endocrinol Metab 2007; 92: 28-38.
  • 12 Hindorf C, Ljungberg M, Strand SE. Evaluation of parameters influencing S values in mouse dosimetry. J Nucl Med 2004; 45: 1960-1965.
  • 13 Hirayama H, Namito Y, Bielajew AF. et al. The EGS5 Code System. SLAC Report number: SLAC-R-730, KEK Report number: 2005-8. 2006
  • 14 Hui TE, Fisher DR, Kuhn JA. et al. A mouse model for calculating cross-organ beta-doses from yt- trium-90-labeled immunoconjugates. Cancer 1994; 73: 951-957.
  • 15 Kappadath SC, Erwin WD, Wendt III RE. Observed intercamera variability in clinically relevant performance characteristics for Siemens Symbia gamma cameras. J Appl Clin Med Phys 2006; 7: 74-80.
  • 16 Kawrakow I, Rogers DWO. The EGSnrc Code System: Monte Carlo simulation of electron and photon transport. Technical Report PIRS-701. National Research Council of Canada; Ottawa, Canada: 2000
  • 17 Kolbert KS, Watson T, Matei C. et al. Murine S Factors for Liver, Spleen, and Kidney. J Nucl Med 2003; 44: 784-791.
  • 18 Konijnenberg MW, Bijster M, Krenning EP. et al. A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with 90Y 111In, or 177 Lu. J Nucl Med 2004; 45: 1260-1269.
  • 19 Koral KF, Adler RS, Carey JE. et al. Iodine-131 treatment of thyroid cancer: absorbed dose calculated from post-therapy scans. J Nucl Med 1986; 27: 1207-1211.
  • 20 Lassmann M, Luster M, Hänscheid H. et al. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med 2004; 45: 619-625.
  • 21 Li W, Friedland W, Pomplun E. et al. Track structures and dose distributions from decays of 131I and 125I in and around water spheres simulating micrometastases of differentiated thyroid cancer. Radiat Res 2001; 156: 419-429.
  • 22 Loevinger R, Berman M. A schema for absorbed-dose calculations for biologically distributed radionuclides. MIRD Pamphlet No. 1. J Nucl Med 1968; 9 (Suppl 1) 7-14.
  • 23 Maxon HR, Englaro EE, Thomas SR. et al. Radio- iodine-131 therapy for well-differentiated thyroid cancer-a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med 1992; 33: 1132-1136.
  • 24 Pacini F, Molinaro E, Castagna MG. et al. Ablation of thyroid residues with 30 mCi 131I: a comparison in thyroid cancer patients prepared with recombinant human TSH or thyroid hormone withdrawal. J Clin Endocrinol Metab 2002; 87: 4063-4068.
  • 25 Pant GS. Dosimetric and radiation safety considerations in radioiodine therapy. Ind J Nucl Med 2005; 20: 1-3.
  • 26 Rault E, Vandenberghe S, van Holen R. et al. Comparison of image quality of different iodine isotopes (I-123, I-124, and I-131). Cancer Biother Radiopharm 2007; 22: 423-430.
  • 27 Samuel AM, Rajashekharrao B. Radioiodine therapy for well-differentiated thyroid cancer: a quantitative dosimetric evaluation for remnant thyroid ablation after surgery. J Nucl Med 1994; 35: 1944-1950.
  • 28 Siegel J, Stabin MG. Absorbed fractions for electrons and beta particles in spheres ofvarious sizes. J Nucl Med 1994; 35: 152-156.
  • 29 Simpkin DJ, Mackie TR. EGS4 Monte Carlo determination of beta dose kernel in water. Med Phys 1990; 17: 179-186.
  • 30 Snyder S, Gorman C, Scanlon P. Thyroid remnant ablation: questionable pursuit of an ill-defined goal. J Nucl Med 1983; 24: 659-665.
  • 31 Sorenson JA, and Phelps ME. Physics in Nuclear Medicine, Chapter 10. Philadelphia: WB Sounders Comp; 1987
  • 32 Stabin MG. MIRDOSE: personal computer software for internal dose in nuclear medicine. J Nucl Med 1996; 37: 538-546.
  • 33 Stabin MG, Sparks R, Crowe E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005; 46: 1023-1027.
  • 34 Taranenko V, Pröhl G, Gomez-Ros J. Absorbed dose rate conversion coefficients for reference terrestrial biota for external photon and internal exposures. J Radiol Prot 2004; 24: A35-A62.
  • 35 Thierens HM, Monsieurs MA, Bacher K. Patient dosimetry in radionuclide therapy: the whys and the wherefores. Nucl Med Commun 2005; 26: 593-599.
  • 36 Van Nostrand D, Atkins F, Yeganeh F. et al. Dosi- metrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid 2002; 12: 121-134.
  • 37 Woodrum DT, Gauger PG. Role of 131I in the treatment of well differentiated thyroid cancer. J Surg Oncol 2005; 89: 114-121.