Subscribe to RSS
DOI: 10.3414/ME0538
Comparative Evaluation of Balancing Properties of Stratified Randomization Procedures
Publication History
received:
15 February 2008
accepted:
08 February 2008
Publication Date:
17 January 2018 (online)
Summary
Objectives: If in a clinical trial prognostic factors are known in advance to be associated with the outcome of a patient it is often recommended that the randomization for a clinical trial should be stratified on these factors, particularly in a multicenter trial. Unfortunately, stratified or covariate-adaptive randomization does not always promote greater balance between the numbers of treatment assignments to A and B within each stratum and thus overall. Because such designs have numerous parameters that must be specified, simulation is a good tool to investigate the impact of these parameters on balance.
Methods: We investigate and discuss in more detail the difference in balancing performance of three stratified randomization procedures. The permuted-block randomization within strata, the “minimization” method and “self-adjusting” design are assessed overall, within levels of prognostic factors, and within strata.
Results: We show the superior performance of “self-adjusting” design and the extent of balancing losses occurring with permuted-block randomization within levels of factors and with “minimization” within strata. A summary of principal conclusions regarding the balancing properties of stratified randomization procedures is presented and general recommendations are offered.
Conclusions: The relative merits of each procedure should be weighted carefully in relation to the characteristics of the trial. Considering the likelihood of imbalances, the sample size and values of parameters of stratified randomization procedures (number of prognostic factors, number of factor levels, block size) are important when choosing a randomization procedure.
-
References
- 1 Kundt G. A New Proposal for Setting Parameter Values in Restricted Randomization Methods. Methods Inf Med 2007; 46: 440-449.
- 2 Zelen M. The randomization and stratification of patients to clinical trials. Journal of Chronic Diseases 1974; 27: 365-375.
- 3 European Agency for the Evaluation of Medicinal Products (EMEA).. ICH Topic E9, Statistical Principles for Clinical Trials. London: 1998
- 4 Pocock SJ, Simon R. Sequential treatment assignments with balancing for prognostic factors in the controlled clinical trial. Biometrics 1975; 31: 103-115.
- 5 Nordle Ö, Brantmark B. A self-adjusting randomization plan for allocation of patients into two treatment groups. Clinical Pharmacology and Therapeutics 1977; 22: 825-830.
- 6 Kalish LA, Begg CB. Treatment allocation methods in clinical trials: A review. Statistics in Medicine 1985; 4: 129-144.
- 7 Matts JP, Lachin JM. Properties of permuted-block randomization in clinical trials. Controlled Clinical Trials 1988; 9: 327-344.
- 8 Pocock SJ. Statistical aspects of clinical trial design. The Statistician 1982; 31 (01) 1-18.
- 9 Thernau TM. How many stratification factors are “too many” to use in a randomization plan?. Controlled Clinical Trials 1993; 14: 98-108.
- 10 Hallstrom A, Davis K. Imbalance in treatment assignments in stratified blocked randomization. Controlled Clinical Trials 1988; 9: 375-382.
- 11 Schouten HJ. Adaptive biased urn randomization in small strata when blinding is impossible. Biometrics 1995; 51: 1529-1535.
- 12 Hagino A, Hamada C, Yoshimura I, Ohashi Y, Sakamoto J, Nakazato H. Statistical comparison of random allocation methods in cancer clinical trials. Controlled Clinical Trials 2004; 25: 572-584.
- 13 Signorini DF, Leung O, Simes RJ, Beller E, Gebski VJ. Dynamic balanced randomization for clinical trials. Statistics in Medicine 1993; 12: 2343-2350.
- 14 Altman DG, Bland JM. Treatment allocation by minimisation. BMJ 2005; 330: 843.