Subscribe to RSS
DOI: 10.3414/ME10-01-0033
Prediction of Countershock Success in Patients Using the Autoregressive Spectral Estimation
Publication History
received:22 April 2010
accepted:29 January 2011
Publication Date:
20 January 2018 (online)
Summary
Objectives: Ventricular fibrillation (VF) is a life-threatening cardiac arrhythmia and within of minutes of its occurrence, optimal timing of countershock therapy is highly warranted to improve the chance of survival. This study was designed to investigate whether the autoregressive (AR) estimation technique was capable to reliably predict countershock success in VF cardiac arrest patients.
Methods: ECG data of 1077 countershocks applied to 197 cardiac arrest patients with out-of-hospital and in-hospital cardiac arrest between March 2002 and July 2004 were retrospectively analyzed. The ECG from the 2.5 s interval of the precountershock VF ECG was used for computing the AR based features Spectral Pole Power (SPP) and Spectral Pole Power with Dominant Frequency weighing (SPPDF) and Centroid Frequency (CF) and Amplitude Spectrum Area (AMSA) based on Fast Fourier Transformation (FFT).
Results: With ROC AUC values up to 84.1 % and diagnostic odds ratio up to 19.12 AR based features SPP and SPPDF have better prediction power than the FFT based features CF (80.5 %; 6.56) and AMSA (82.1 %; 8.79).
Conclusions: AR estimation based features are promising alternatives to FFT based features for countershock outcome when analyzing human data.
-
References
- 1 Deakin CD, Nolan JP. European Resuscitation Council guidelines for resuscitation 2005. Section 3. Electrical therapies: automated external defibrillators, defibrillation, cardioversion and pacing. Resuscitation 2005; 67: 25-37.
- 2 Sato Y, Weil MH, Sun S, al et. Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation. Crit Care Med 1997; 25: 733-736.
- 3 Martin G, Cosin J, Such M, Hernandez A, Llamas P. Relation between power spectrum time course during ventricular fibrillation and electromechanical dissociation. Effects of coronary perfusion and nifedipine. Eur Heart J 1986; 7: 560-569.
- 4 Xie J, Weil MH, Sun S, Tang W, Sato Y, Jin X, Bisera J. High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 1997; 96: 683-688.
- 5 Eftestøl T, Sunde K, Aase SO, Husøy JH, Steen PA. Predicting Outcome of Defibrillation by spectral Characterization and Nonparametric Classification of Ventriculat Fibrillation in Patients with out-of-hospital cardiac Arrest. Circulation 2000; 102: 1523-1529.
- 6 Brown CG, Griffith RF, Ligten PV, al et. Median Frequency: a new parameter for predicting defibrillations success rate. Ann Emerg Med 1991; 20: 787-789.
- 7 Strohmenger HU, Eftestøl T, Sunde K, Wenzel V, Mair M, Ulmer H, Lindner KH, Steen PA. The predictive value of ventricular fibrillation electrocardiogram signal frequency and amplitude variables in patients with out-of-hospital cardiac arrest. Anesth analg 2001; 93: 1428-1433.
- 8 Eftestøl T. K., Sunde PA, Steen PA.. Effects of Interrupting Precordial Compressions on the Calculated Probability of Defibrillation Success During Out-of-Hospital cardiac Arrest. Circulation 2002; 105: 2270-2273.
- 9 Neurauter A, Kramer-Johansen J, Eilevstjønn J, Myklebust H, Wenzel V, Lindner KH, Eftestøl T, Steen PA, Strohmenger HU. Estimation of the duration of ventricular fibrillation using ECG single feature analysis. Resuscitation 2007; 73: 246-252.
- 10 Strohmenger HU, Lindner KH, Brown CG. Analysis of the Ventricular Fibrillation ECG Signal Amplitude and Frequency Parameters as Prediction of Counterschock Success in Humans. Chest 1997; 111: 584-589.
- 11 Baselli G, Porta A, Rimoldi O, Pagani M, Cerutti S. Spectral Decomposition in Multichannel Recordings Based on Multivariate Parametric Identification. IEEE Trans Biomed Eng 1997; 44: 1092-1110.
- 12 Signorini MG, Magenes G, Cerutti S. Linear and Nonlinear Parameters for the Analysis of Fetal Heart Rate Signal from Cardiotocographic recordings. IEEE Trans Biomed Eng 2003; 50: 365-374.
- 13 Jensen EW, Lindholm P, Henneberg SW. Autoregressive modeling with exogenous input of middle-latency auditory-evoked potentials to measure rapid changes in depth of anesthesia. Methods Inf Med 1996; 35: 256-260.
- 14 Mainardi LT, Bianchi AM, Baselli G, Cerutti S. Pole-Tracking Algorithms for the Extraction of Time-Variant Heart Rate Variability Spectral Parameters. IEEE Trans Biomed Eng 1995; 42: 250-259.
- 15 NN. The International Guidelines 2000 for CPR and ECCL: a consensus on science. Resuscitation 2000; 46: 1-448
- 16 Grmec S, Krizmaric M, Mally S, Kozelj A, Spindler M, Lesnik B. Utstein style analysis of out-of-hospital cardiac arrest - bystander CPR and end exspired carbon dioxide. Resuscitation 2007; 72: 404-414
- 17 Neurauter A, Eftestøl T, Kramer-Johansen J, Abella BS, Wenzel V, Lindner KH, Eilevstjønn J, Myklebust H, Steen PA, Sterz F, Jahn B, Strohmenger HU. Improving countershock success prediction during cardiopulmonary resuscitation using ventricular fibrillation features from higher ECG frequency bands. Resuscitation 2008; 79: 453-459.
- 18 Stoica P, Moses RL. Introduction to Spectral Analysis. Engelwood Cliffs, New Jersey: Prentice-Hall 1997
- 19 Nowak CN, Fischer G, Neurauter A, Wieser L, Strohmenger HU. Prediction of Countershock Success - A comparison of Autoregressive and Fourier transformed Spectral Estimation. Methods Inf Med 2009; 48: 486-492.
- 20 Baselli G, Porta A, Rimoldi O, Pagani M, Cerutti S. Spectral Decomposition in Multichannel Recordings Based on Multivariate Parametric Identification. IEEE Trans Biomed Eng 1997; 44: 1092-1110.
- 21 Fischer G, Nowak CN, Wieser L, Tilg B, Strohmenger HU. AR Frequency Band Analysis of the ECG During Non-Ischemic Ventricular Fibrillation in Swine. Proceedings of Österreichischen Gesellschaft für Biomedizinische Technik 2006; pp 51-52.
- 22 Eftestøl T, Wik L, Sunde K, Steen PA. Effects of Cardiopulmonary Resuscitation on Predictors of Ventricular Fibrillation Success During Out-of-Hospital Cardiac Arrest. Circulation 2004; 110: 10-15.
- 23 Callaway CW, Menegazzi JJ. Waveform analysis of ventricular fibrillation to predict defibrillation. Curr Opin Crit Care 2005; 11: 192-199.
- 24 Marn-Pernat A, Weil MH, Tang W, Pernat A, Bisera J. Optimizing timing of ventricular defibrillation. Crit Care Med 2001; 29: 2360-2365.
- 25 Ristagno G, Gullo A, Berlot G, Lucangelo U, Geheb E, Bisera J. Prediction of successful defibrillation in human victims of out-of-hospital cardiac arrest: a retrospective electrocardiographic analysis. Anaesth Intensive Care 2008; 36: 46-50.
- 26 Faraggi D, Reiser B. Estimating of area under the ROC curve. Stat Med 2002; 21: 3093-3106.
- 27 Hajian Tilaki KO, Hanley JA, Joseph L, Collet JP. A comparison of parametris and nonparametric approaches to ROC analysis of quantitative diagnosis tests. Med Decis Making 1997; 17: 94-102.
- 28 Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29-36.
- 29 Simel DL, Somso GF, Motchar D. Likelihood ratio with confidence: sample size estimation for diagnostic test studies. J Clin Epidemiol 1991; 44: 763
- 30 Sherman LD, Callaway CW, Menegazzi JJ. Ventricular fibrillation exhibits dynamical properties and self-similarity. Resuscitation 2000; 47: 163-173.
- 31 Watson JN, Uchaipichat N, Addison PS, Clegg GR, Robertson CE, Eftestøl T, Steen PA. Improved prediction of defibrillation success for out-of-hospital VF cardiac arrest using wavelet transform methods. Resuscitation 2004; 63: 269-275.
- 32 Schloegl A, Supp G. Analyzing event-related EEG data with multivariate autoregressive parameters. Prog Brain res 2006; 159: 135-147.
- 33 Capek P, Skvor J. Hypertrophic cardiomyopathy molecular genetic analysis of exons 9 and 11 of the TNNT2 gene in Czech patients. Methods Inf Med 2006; 45: 169-172.
- 34 Indik JH, Donnerstein RL, Hilwig RW, Zuercher M, Feigelman J, Kern KB, Berg MD, Berg RA. The influence of myocardial substrate on ventricular fibrillation waveform: a swine model of acute and postmyocardial infarction. Crit Care Med 2008; 36: 2136-2142.
- 35 Siregar P, Julen N, Sinte JP. Computational integrative physiology: at the convergence of the life and computational sciences. Methods Inf Med 2003; 42: 177-184.
- 36 Reed MJ, Clegg GR, Robertson CE. Analysing the ventricular fibrillation waveform. Resuscitation 2003; 57: 11-12.
- 37 Martínez D, Heudebert G, Seas C, Henostroza G, Rodriguez M, Zamudio C, Centor RM, Herrera C, Gotuzzo E, Estrada C. Clinical prediction rule for stratifying risk of pulmonary multidrug-resistant tuberculosis. PLoS One 2010; 11-5.
- 38 Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 2003; 56: 1129-1135.
- 39 Pieta B, Samulak D, Opala T, Wilczak M, Grodecka-Gazdecka S, Wieznowska-Maczyńska K. Analysis of odds ratio of increased relative risk of developing breast cancer in different groups of women. Eur J Gynaecol Oncol 2010; 31: 50-54.