Methods Inf Med 2012; 51(06): 557-565
DOI: 10.3414/ME11-02-0028
Focus Theme – Original Articles
Schattauer GmbH

Semantic Localization-driven Partial Image Retrieval in CT Series

A. Cavallaro
1   Imaging Science Institute, University Hospital Erlangen, Erlangen, Germany
,
H.-P. Kriegel
2   Institute for Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
,
M. Petri
2   Institute for Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
,
M. Schubert
2   Institute for Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
› Author Affiliations
Further Information

Publication History

received:05 September 2011

accepted:26 June 2012

Publication Date:
20 January 2018 (online)

Summary

Background: Picture archiving and communication systems (PACS) contain very large amounts of computed tomography (CT) data. When querying a PACS for a particular series, the user is often not interested in the complete series but in a certain region of interest (ROI), described e.g. by an example view in another series or an anatomical concept.

Objectives: Restricting a retrieval query to such an ROI saves both loading time and navigational effort. In this paper, we propose an efficient method for defining and retrieving ROIs.

Methods: We employ interpolation and regression techniques for mapping the slices of a series to a newly generated standardized height atlas of the human body.

Results: Examinations of the accuracy and the saved input/output (I/O) costs of our new method on a repository of 1,360 CT series demonstrate the advantages of our system. Depending on the scope of the retrieval query, we can economize up to 99% of the total loading time.

Conclusion: Our proposed method for flexible, context-based, partial image retrieval enables the user to directly focus on the relevant portion of the image material and it targets the high potential of I/O cost reduction of a common PACS.

 
  • References

  • 1 Sofka M, Ralovich K, Zhang J, Zhou SK, Comaniciu D. Progressive Data Transmission for Anatomical Landmark Detection in a Cloud. Methods Inf Med 2012; 51 (03) 268-278.
  • 2 Sirohey SA, Avinash GB. inventors; GE Medical Systems, assignee. Method and apparatus for creating a multi-resolution framework for improving medical imaging workflow. United States patent US 7,489,825 B2. 2009. Feb 10
  • 3 Ström J, Cosman PC. Medical image compression with lossless regions of interest. Signal Process 1997; 59 (02) 155-171.
  • 4 Seifert S, Kelm M, Moeller M, Mukherjee S, Cavallaro A, Huber M, Comaniciu D. Semantic annotation of medical images. In. Liu BJ, Boonn WW. editors Medical Imaging 2010; Advanced PACS-based Imaging Informatics and Therapeutic Applications. Proceedings of SPIE. San Diego, CA: 2010. 7628 762808
  • 5 Akgül CB, Rubin DL, Napel S, Beaulieu CF, Greenspan H, Acar B. Content-based image retrieval in radiology: Current status and future directions. J Digit Imaging 2011; 24 (02) 208-222.
  • 6 Lehmann TM, Güld MO, Thies C, Fischer B, Spitzer K, Keysers D, Ney H, Kohnen M, Schubert H, Wein BB. Content-based image retrieval in medical applications. Methods Inf Med 2004; 43 (04) 354-361.
  • 7 Müller H, Deserno TM. Content-based medical image retrieval. In. Deserno TM. Editor Biomedical Image Processing. Biological and Medical Physics, Biomedical Engineering. Berlin: Springer; 2011: 471-494.
  • 8 Deserno TM, Antani S, Long R. Ontology of Gaps in Content-Based Image Retrieval. J Digit Imaging 2009; 22 (02) 202-215.
  • 9 Hill DLG, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol 2001; 46 (03) R1-45.
  • 10 Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal 1998; 2 (01) 1-36.
  • 11 Criminisi A, Shotton J, Robertson D, Konukoglu E. Regression Forests for Efficient Anatomy Detection and Localization in CT Studies, Paper presented at: Medical Computer Vision 2010: Recognition Tech-niques and Applications in Medical Imaging, MIC-CAI workshop; Sep 2010. Beijing, China: 2010
  • 12 Robertson D, Pathak SD, Criminisi A, White S, Haynor D, Chen O, Siddiqui K. Comparative Analysis of Semantic Localization Accuracies Between Adult and Pediatric DICOM CT Images. In. Liu BJ, Boonn WW. editors Medical Imaging 2012; Advanced PACS-based Imaging Informatics and Therapeutic Applications. Proceedings of SPIE Vol. 8319. San Diego, CA: 2012: 83190N
  • 13 Cavallaro A, Graf F, Kriegel HP, Schubert M, Thoma M. Region of interest queries in CT scans. In. Pfoser D, Tao Y, Mouratidis K, Nascimento MA, Mokbel M, Shekhar S, Huang Y. editors Advances in Spatial and Temporal Databases. Proceedings of the 12th International Symposium (SSTD 2011). Minneapolis, MN: 2011: 56-73.
  • 14 Emrich E, Graf F, Kriegel HP, Schubert M, Thoma M, Cavallaro A. CT slice localization via instance-based regression. In. Dawant BM, Haynor DR. editors Medical Imaging 2010 Image Processing. Proceedings of SPIE Vol. 7623. San Diego, CA: 2010: 762320
  • 15 Haas B, Coradi T, Scholz M, Kunz P, Huber M, Oppitz U, AndrÉ L, Lengkeek V, Huyskens D, van Esch A, Reddick R. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies. Phys Med Biol 2008; 53 (06) 1751-1771.
  • 16 Schölkopf B, Sung K, Burges CJC, Girosi F, Niyogi P, Poggio T, Vapnik V. Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE T Signal Proces 1997; 45 (11) 2758-2765.
  • 17 Seifert S, Barbu A, Zhou SK, Liu D, Feulner J, Huber M, Suehling M, Cavallaro A, Comaniciu D. Hierarchical parsing and semantic navigation of full body CT data. In Pluim JPW, Dawant BM. editors Medical Imaging 2009 Image Processing. Proceedings of SPIE Vol 7259. Lake Buena Vista, FL: 2009: 725902