Methods Inf Med 2017; 56(06): 461-468
DOI: 10.3414/ME17-01-0027
Original Articles
Schattauer GmbH

Maximum Entropy Approach in Dynamic Contrast-Enhanced Magnetic Resonance Imaging

Zahra Amini Farsani
1   Bioimaging Group, Department of Statistics, Ludwig-Maximilians-University of Munich, Munich, Germany
2   Department of Statistics, Lorestan University, Khorramabad, Iran
,
Volker J. Schmid
1   Bioimaging Group, Department of Statistics, Ludwig-Maximilians-University of Munich, Munich, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 16. März 2017

accepted: 26. September 2017

Publikationsdatum:
10. Februar 2018 (online)

Summary

Background: In the estimation of physiological kinetic parameters from Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) data, the determination of the arterial input function (AIF) plays a key role.

Objectives: This paper proposes a Bayesian method to estimate the physiological parameters of DCE-MRI along with the AIF in situations, where no measurement of the AIF is available.

Methods: In the proposed algorithm, the maximum entropy method (MEM) is combined with the maximum a posterior approach (MAP). To this end, MEM is used to specify a prior probability distribution of the unknown AIF. The ability of this method to estimate the AIF is validated using the Kullback-Leibler divergence. Subsequently, the kinetic parameters can be estimated with MAP. The proposed algorithm is evaluated with a data set from a breast cancer MRI study.

Results: The application shows that the AIF can reliably be determined from the DCE-MRI data using MEM. Kinetic parameters can be estimated subsequently.

Conclusions: The maximum entropy method is a powerful tool to reconstructing images from many types of data. This method is useful for generating the probability distribution based on given information. The proposed method gives an alternative way to assess the input function from the existing data. The proposed method allows a good fit of the data and therefore a better estimation of the kinetic parameters. In the end, this allows for a more reliable use of DCE-MRI.

 
  • References

  • 1 Berger AL, Pietra VJ, Pietra SA. A maximum entropy approach to natural language processing. Computational Linguistics 1996; 22 (01) 39-71.
  • 2 Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thévenin D. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. Journal of Biomechanical Engineering 2014; 136 (04) 041003.
  • 3 Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, Griebel J. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magnetic Resonance in Medicine 2004; 52 (02) 420-429.
  • 4 Parker GJ. Measuring contrast agent concentration in T1-weighted dynamic contrast-enhanced MRI. In: Jackson A, Buckley DL, Parker GJM. editors. Dynamic contrast-enhanced magnetic resonance imaging in oncology. Berlin Heidelberg: Springer; 2005: 69-79.
  • 5 Casella G, Berger RL. Statistical Inference. 2nd ed. Pacific Grove, CA: Duxbury Press; 2002
  • 6 Cheng HL. T1 measurement of flowing blood and arterial input function determination for quantitative 3D T1-weighted DCE-MRI. Journal of Magnetic Resonance Imaging 2007; 25 (05) 1073-1078.
  • 7 Cheng HL. Investigation and optimization of parameter accuracy in dynamic contrast-enhanced MRI. Journal of Magnetic Resonance Imaging 2008; 28 (03) 736-743.
  • 8 Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. Journal of Magnetic Resonance Imaging 2003; 17 (05) 509-520.
  • 9 Dikaios N, Arridge S, Hamy V, Punwani S, Atkinson D. Direct parametric reconstruction from undersampled (k, t)-space data in dynamic contrast enhanced MRI. Medical Image Analysis 2014; 18 (07) 989-1001.
  • 10 Dikaios N, Atkinson D, Tudisca C, Purpura P, Forster M, Ahmed H, Beale T, Emberton M, Punwani S. A comparison of Bayesian and non-linear regression methods for robust estimation of pharmacokinetics in DCE-MRI and how it affects cancer diagnosis. Computerized Medical Imaging and Graphics 2017; 56: 1-10.
  • 11 Hamya V, Dikaiosa N, Punwania S, Melbourneb A, Latifoltojara A, Makanyangaa J, Chouhana M, Helbrena E, Menysa A, Taylora S, Atkinsona D. Respiratory motion correction in dynamic MRI using robust data decomposition registration – Application to DCE-MRI. Medical Image Analysis 2014; 18 (02) 301-313.
  • 12 Mohammad-Djafari A, Demoment G. Estimating priors in maximum entropy image processing. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1990 ICASSP-90. 2069-2072.
  • 13 Ebrahimi N, Soofi ES, Soyer R. Multivariate maximum entropy identification, transformation, and dependence. Journal of Multivariate Analysis 2008; 99 (06) 1217-1231.
  • 14 Elfving T. An algorithm for maximum entropy image reconstruction from noisy data. Mathematical and Computer Modelling 1989; 12 (06) 729-745.
  • 15 Eyal E, Degani H. Model-based and model-free parametric analysis of breast dynamic contrast enhanced MRI. NMR in Biomedicine 2009; 22 (01) 40-53.
  • 16 Fluckiger JU, Schabel MC, DiBella EV. Toward local arterial input functions in dynamic contrastenhanced MRI. Journal of Magnetic Resonance Imaging 2010; 32 (04) 924-934.
  • 17 Friedman MH, Kuban BD, Schmalbrock P, Smith K, Altan T. Fabrication of vascular replicas from magnetic resonance images. J Biomech Eng 1995; 117 (03) 364-366.
  • 18 Fritz-Hansen T, Rostrup E, Larsson HB, Søndergaard L, Ring P, Henriksen O. Measurement of the arterial concentration of Gd-DTPA using MRI: A step toward quantitative perfusion imaging. Magnetic Resonance in Medicine 1996; 36 (02) 225-231.
  • 19 Gauthier M, Pitre-Champagnat S, Tabarout F, Leguerney I, Polrot M, Lassau N. Impact of the arterial input functionon microvascularization parameter measurements using dynamic contrast-enhanced ultrasonography. World Journal of Radiology 2012; 04 (07) 291.
  • 20 Gull SF, Skilling J. Maximum entropy method in image processing. IEE Proceedings F – Communications, Radar and Signal Processing 1984; 131 (06) 646-659.
  • 21 Jackson A, Constable C, Gillet N. Maximum entropy regularization of the geomagnetic core field inverse problem. Geophysical Journal International 2007; 171 (03) 995-1004.
  • 22 Jaynes ET. Information theory and statistical mechanics. Physical Review 1957; 106 (04) 620.
  • 23 Kelm BM, Menze BH, Nix O, Zechmann CM, Hamprecht FA. Estimating kinetic parameter maps from dynamic contrast-enhanced MRI using spatial prior knowledge. IEEE Transactions on Medical Imaging 2009; 28 (10) 1534-1547.
  • 24 Larsson HB, Tofts PS. Measurement of blood- brain barrier permeability using dynamic GdDTPA scanning – a comparison of methods. Magnetic Resonance in Medicine 1992; 24 (01) 174-176.
  • 25 Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, Jayson GC, Judson IR, Knopp MV, Maxwell RJ, McIntyre D. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. British Journal of Cancer 2005; 92 (09) 1599.
  • 26 Moré JJ. The Levenberg-Marquardt algorithm: implementation and theory. In: Watson GA. editor. Numerical Analysis. Berlin, Heidelberg: Springer; 1978: 105-116.
  • 27 Murase K. Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast- enhanced magnetic resonance imaging. Magnetic Resonance in Medicine 2004; 51 (04) 858-862.
  • 28 Orton MR, Collins DJ, Walker-Samuel S, d’Arcy JA, Hawkes DJ, Atkinson D, Leach MO. Bayesian estimation of pharmacokinetic parameters for DCE-MRI with a robust treatment of enhancement onset time. Physics in Medicine and Biology 2007; 52 (09) 2393.
  • 29 Parker GJ, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, Jackson A, Watson Y, Davies K, Jayson GC. Experimentally-derived functional form for a population-averaged high- temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine 2006; 56 (05) 993-1000.
  • 30 Della SPietra, Della VPietra, Lafferty J. Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997; 19 (04) 380-393.
  • 31 Port RE, Knopp MV, Brix G. Dynamic contrastenhanced MRI using Gd-DTPA: interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magnetic Resonance in Medicine 2001; 45 (06) 1030-1038.
  • 32 Pougaza DB, Djafari AM. Maximum Entropy Copulas. AIP Conference Proceeding; 2011: 2069-2072.
  • 33 Schabel MC, Fluckiger JU, DiBella EV. A modelconstrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: I. Simulations. Physics in Medicine and Biology 2010; 55 (16) 4783.
  • 34 Schmid VJ, Whitcher B, Padhani AR, Yang GZ. Quantitative analysis of dynamic contrast-enhanced MR images based on Bayesian P-splines. IEEE Transactions on Medical Imaging 2009; 28 (06) 789-798.
  • 35 Schmid VJ, Whitcher B, Padhani AR, Taylor NJ, Yang GZ. Bayesian methods for pharmacokinetic models in dynamic contrast-enhanced magnetic resonance imaging. IEEE Transactions on Medical Imaging 2006; 25 (12) 1627-1636.
  • 36 Schmid VJ, Whitcher B, Padhani AR, Taylor NJ, Yang GZ. A Bayesian hierarchical model for the analysis of a longitudinal dynamic contrast-enhanced MRI oncology study. Magnetic Resonance in Medicine 2009; 61 (01) 163-174.
  • 37 Schmid VJ. Kinetic models for cancer imaging. In: Arabnia HR. editor. Advances in computational biology. New York: Springer Science & Business Media; 2010
  • 38 Shannon CE. A mathematical theory of communication, Part I, Part II. Bell Syst Tech J 1948; 27: 623-656.
  • 39 Shirazi AS, Razi T, Cheraghi F, Rahim F, Ehsani S, Davoodi M. Diagnostic accuracy of magnetic resonance imaging versus clinical staging in cervical cancer. Asian Pac J Cancer Prev 2014; 15 (14) 5729-5732.
  • 40 Sommer JC, Schmid VJ. Spatial two-tissue compartment model for dynamic contrast-enhanced magnetic resonance imaging. Journal of the Royal Statistical Society: Series C (Applied Statistics) 2014; 63 (05) 695-713.
  • 41 Steingoetter A, Menne D, Braren RF. Assessing antiangiogenic therapy response by DCE-MRI: development of a physiology driven multi-compartment model using population pharmacometrics. PloS One 2011; 06 (10) e26366.
  • 42 Cover TM, Thomas JA. Elements of Information Theory. 2nd ed. Hoboken, NJ: Wiley; 2006: 1-2.
  • 43 Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magnetic Resonance in Medicine 1991; 17 (02) 357-367.
  • 44 Weinmann HJ, Laniado M, Mützel W. Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiological Chemistry and Physics and Medical NMR 1984; 16 (02) 167-172.
  • 45 Whitcher B, Schmid VJ. Quantitative analysis of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging for oncology in R. Journal of Statistical Software 2011; 44 (05) 1-29.
  • 46 Yari GH, Farsani ZA. Application of the Maximum Entropy Method for Determining a Sensitive Distribution in the Renewable Energy Systems. Journal of Energy Resources Technology 2015; 137 (04) 042006.