Subscribe to RSS
DOI: 10.5482/HAMO-14-09-0039
The vulnerable blood
Coagulation and clot structure in diabetes mellitusDas vulnerable BlutGerinnung und Gerinnselstruktur bei Diabetes mellitus The author is supported by the Deutsche Forschungsgemeinschaft (HE 5666/1–2).Publication History
received:
01 September 2014
accepted in revised form:
11 November 2014
Publication Date:
28 December 2017 (online)
Summary
Patients with diabetes are at increased risk of cardiovascular morbidity and mortality. While arteriosclerotic lesions have long been recognized as the underlying cause more recent studies suggest that alterations of the blood are also critically involved. Following plaque rupture, adherence of platelets is followed by the formation of a cross-linked fibrin clot. Patients with diabetes exhibit a prothrombotic milieu consisting of hyper reactive platelets, a tight and rigid clot structure which is due to up-regulation of coagulation factors and prolongation of clot lysis. Metabolic alterations as well as inflammatory processes, which are up–regulated in diabetes, are thought to be the main underlying causes. More recently, the complement cascade has emerged as a potential new player in this context with several complement components directly influencing both platelet function and coagulation.
This review provides an overview concerning the changes that lead to alterations of platelet function and clot structure in diabetes.
Zusammenfassung
Patienten mit Diabetes mellitus haben ein deutlich erhöhtes kardiovaskuläres Risiko. Lange Zeit galten Veränderungen der arteriosklerotischen Plaque als Ursache. Neue Studien legen nahe, dass Veränderungen des Blutes in diesem Zusammenhang ebenfalls eine entscheidende Rolle spielen. Im Rahmen der Plaque-Ruptur kommt es zur Aktivierung der Thrombozyten mit konsekutiver Bildung eines quervernetzten Fibringerinnsels. Patienten mit Diabetes mellitus weisen ein deutlich erhöhtes thrombotisches Milieu auf, das durch Thrombozytendysfunktion sowie eine deutlich dichtere und rigidere Fibringerinnselstruktur gekennzeichnet ist. Letztere kommt durch das vermehrte Vorliegen von Gerinnungsfaktoren und Inhibitoren der Fibrinolyse zustande. Insgesamt gelten metabolische Veränderungen sowie das bei Patienten mit Diabetes mellitus erhöhte inflammatorische Milieu als ursächlich. Neue Studien legen zudem eine Beteiligung des Komplementsystems in diesem Zusammenhang nahe.
Dieser Überblick erklärt die Veränderungen der Thrombozytenfunktion und der Fibringerinnsel bei Patienten mit Diabetes mellitus.
-
References
- 1 International Diabetes Federation. IDF Diabetes atlas sixth edition. http://wwwidforg/diabetesat- las/content/diabetes-and-impairedglucose-tolerance 2013
- 2 Haffner SM, Lehto S. Rönnemaa et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339: 229-234.
- 3 Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340: 115-126.
- 4 Hess K, Marx N, Lehrke M. Cardiovascular disease and diabetes: the vulnerable patient. Eur Heart J (Suppl) 2012; 14: B4-B13.
- 5 Angiolillo DJ, Ueno M, Goto S. Basic principles of platelet biology and clinical implications. Circ J 2010; 74: 597-607.
- 6 Watala C. Blood platelet reactivity and its pharmacological modulation in (people with) diabetes mellitus. Curr Pharm Des 2005; 11: 2331-2365.
- 7 Davì G, Catalano I, Averna M. et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med 1990; 322: 1769-1774.
- 8 Ferroni P, Basili S, Falco A. et al. Platelet activation in type 2 diabetes mellitus. J Thromb Haemost 2004; 02: 1282-1291.
- 9 Li Y, Woo V, Bose R. Platelet hyperactivity and abnormal Ca(2+) homeostasis in diabetes mellitus. Am J Physiol Heart Circ Physiol 2001; 280: H1480-H1489.
- 10 Zheng Y, Wang L, Zhu Z. et al. Altered platelet calsequestrin abundance, Na+/Ca2+ exchange and Ca2+ signaling responses with the progression of diabetes mellitus. Thromb Res 2014; 134: 674-681.
- 11 Falcon C, Pfliegler G, Deckmyn H. et al. The platelet insulin receptor: detection, partial characterization, and search for a function. Biochem Biophys Res Commun 1988; 157: 1190-1196.
- 12 Ferreira IA, Eybrechts KL, Mocking AI. et al. IRS-1 mediates inhibition of Ca2+ mobilization by insulin via the inhibitory G-protein Gi. J Biol Chem 2004; 279: 3254-3264.
- 13 Ferreira IA, Mocking AI, Feijge MA. et al. Platelet inhibition by insulin is absent in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2006; 26: 417-422.
- 14 Rao AK, Freishtat RJ, Jalagadugula G. et al. Alterations in insulin-signaling and coagulation pathways in platelets during hyperglycemia-hyperinsulinemia in healthy non-diabetic subject. Thromb Res 2014; 134: 704-710.
- 15 Angiolillo DJ, Suryadevara S. Aspirin and clopidogrel: efficacy and resistance in diabetes mellitus. Best Pract Res Clin Endocrinol Metab 2009; 23: 375-388.
- 16 Singer J, Weissler ASnir, Leshem-Lev D. et al. Effect of intensive glycemic control on platelet reactivity in patients with long-standing uncontrolled diabetes. Thromb Res 2014; 134: 121-124.
- 17 Ferretti G, Rabini RA, Bacchetti T. et al. Glycated low density lipoproteins modify platelet properties: a compositional and functional study. J Clin Endocrinol Metab 2002; 87: 2180-2184.
- 18 Ha H, Lee HB. Oxidative stress in diabetic nephropathy: basic and clinical information. Curr Diab Rep 2001; 01: 282-287.
- 19 Davì G, Falco A, Patrono C. Determinants of F2-isoprostane biosynthesis and inhibition in man. Chem Phys Lipids 2004; 128: 149-163.
- 20 De Vriese AS, Verbeuren TJ, Van de Voorde J. et al. Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130: 963-974.
- 21 Collet JP, Allali Y, Lesty C. et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol 2006; 26: 2567-2573.
- 22 Owens AP, Mackman N. Tissue factor and thrombosis: The clot starts here. Thromb Haemost 2010; 104: 432-439.
- 23 Breitenstein A, Tanner FC, Lüscher TF. Tissue factor and cardiovascular disease. Circ J 2010; 74: 3-12.
- 24 Steffel J, Hermann M, Greutert H. et al. Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation 2005; 111: 1685-1689.
- 25 Napoleone E, Di Santo A, Lorenzet R. Monocytes upregulate endothelial cell expression of tissue factor: a role for cell-cell contact and cross-talk. Blood 1997; 89: 541-549.
- 26 Steffel J, Akhmedov A, Greutert H. et al. Histamine induces tissue factor expression: implications for acute coronary syndromes. Circulation 2005; 112: 341-349.
- 27 Eto M, Kozai T, Cosentino F. et al. Statin prevents tissue factor expression in human endothelial cells: role of Rho/Rho-kinase and Akt pathways. Circulation 2002; 105: 1756-1759.
- 28 Drake TA, Hannani K, Fei HH. et al. Minimally oxidized low-density lipoprotein induces tissue factor expression in cultured human endothelial cells. Am J Pathol 1991; 138: 601-607.
- 29 Bouchard BA, Gissel MT, Whelihan MF. et al. Platelets do not express the oxidized or reduced forms of tissue factor. Biochim Biophys Acta 2014; 1840: 1188-1193.
- 30 Österud B, Olsen JO. Human platelets do not express tissue factor. Thromb Res 2013; 132: 112-115.
- 31 Müller I, Klocke A, Alex M. et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J 2003; 17: 476-478.
- 32 Panes O, Matus V, Sáez CG. et al. Human platelets synthesize and express functional tissue factor. Blood 2007; 109: 5242-5250.
- 33 Vignoli A, Giaccherini C, Marchetti M. et al. Tissue Factor Expression on Platelet Surface during Preparation and Storage of Platelet Concentrates. Transfus Med Hemother 2013; 40: 126-132.
- 34 Boden G, Vaidyula VR, Homko C. et al. Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab 2007; 92: 4352-4358.
- 35 Samad F, Pandey M, Loskutoff DJ. Tissue factor gene expression in the adipose tissues of obese mice. Proc Natl Acad Sci U S A 1998; 95: 7591-7596.
- 36 Gerrits AJ, Koekman CA, van Haeften TW. et al. Platelet tissue factor synthesis in type 2 diabetes patients is resistant to inhibition by insulin Diabetes. 2010; 59: 1487-1495.
- 37 Meade TW, Mellows S, Brozovic M. et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986; 02: 533-537.
- 38 Kario K, Miyata T, Sakata T. et al. Fluorogenic assay of activated factor VII. Plasma factor VIIa levels in relation to arterial cardiovascular diseases in Japanese. Arterioscler Thromb 1994; 14: 265-274.
- 39 Heinrich J, Balleisen L, Schulte H. et al. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler Thromb 1994; 14: 54-59.
- 40 Folsom AR, Wu KK, Rosamond WD. et al. Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1997; 96: 1102-1108.
- 41 Klein OL, Okwuosa T, Chan C. et al. Changes in procoagulants track longitudinally with insulin resistance: findings from the Coronary Artery Risk Development in Young Adults (CARDIA) study. Diabet Med 2014; 31: 462-465.
- 42 Balleisen L, Assmann G, Bailey J. et al. Epidemiological study on factor VII, factor VIII and fibrinogen in an industrial population--II. Baseline data on the relation to blood pressure, blood glucose, uric acid, and lipid fractions. Thromb Haemost 1985; 54: 721-723.
- 43 Vambergue A, Rugeri L, Gaveriaux V. et al. Factor VII, tissue factor pathway inhibitor, and monocyte tissue factor in diabetes mellitus: influence of type of diabetes, obesity index, and age. Thromb Res 2001; 101: 367-375.
- 44 Bruckert E, Carvalho Jde Sousa, Giral P. et al. Interrelationship of plasma triglyceride and coagulant factor VII levels in normotriglyceridemic hypercholesterolemia. Atherosclerosis 1989; 75: 129-134.
- 45 Vischer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost 2006; 04: 1186-1193.
- 46 Rumley A, Lowe GD, Sweetnam PM. et al. Factor VIII, von Willebrand factor and the risk of major ischaemic heart disease in the Caerphilly Heart Study. Br J Haematol 1999; 105: 110-116.
- 47 Frankel DS, Meigs JB, Massaro JM. et al. Von Willebrand factor, type 2 diabetes mellitus, and risk of cardiovascular disease: the framingham offspring study. Circulation 2008; 118: 2533-2539.
- 48 Kistorp C, Chong AY, Gustafsson F. et al. Biomarkers of endothelial dysfunction are elevated and related to prognosis in chronic heart failure patients with diabetes but not in those without diabetes. Eur J Heart Fail 2008; 10: 380-387.
- 49 Grant PJ. Diabetes mellitus as a prothrombotic condition. J Intern Med 2007; 262: 157-172.
- 50 Dunn EJ, Ariëns RA. Fibrinogen and fibrin clot structure in diabetes. Herz 2004; 29: 470-479.
- 51 Jacquemin B, Antoniades C, Nyberg F. et al. Common genetic polymorphisms and haplotypes of fibrinogen alpha, beta, and gamma chains affect fibrinogen levels and the response to pro-inflammatory stimulation in myocardial infarction survivors: the AIRGENE study. J Am Coll Cardiol 2008; 52: 941-952.
- 52 Lütjens A, te AAVelde, vd EAVeen. et al. Glycosylation of human fibrinogen in vivo. Diabetologia 1985; 28: 87-89.
- 53 Dunn EJ, Ariëns RA, Grant PJ. The influence of type 2 diabetes on fibrin structure and function. Diabetologia 2005; 48: 1198-1206.
- 54 Pieters M, Covic N, van der Westhuizen FH. et al. Glycaemic control improves fibrin network characteristics in type 2 diabetes – a purified fibrinogen model. Thromb Haemost 2008; 99: 691-700.
- 55 Schroeder V, Kohler HP. New developments in the area of factor XIII. J Thromb Haemost 2013; 11: 234-244.
- 56 Kohler HP, Stickland MH, Ossei-Gerning N. et al. Association of a common polymorphism in the factor XIII gene with myocardial infarction. Thromb Haemost 1998; 79: 8-13.
- 57 Hethershaw EL, Cilia ALLa Corte, Duval C. et al. The effect of blood coagulation factor XIII on fibrin clot structure and fibrinolysis. J Thromb Haemost 2014; 12: 197-205.
- 58 Mansfield MW, Kohler HP, Ariëns RA. et al. Circulating levels of coagulation factor XIII in subjects with type 2 diabetes and in their first-degree relatives. Diabetes Care 2000; 23: 703-705.
- 59 Schneider DJ, Nordt TK, Sobel BE. Attenuated fibrinolysis and accelerated atherogenesis in type II diabetic patients. Diabetes 1993; 42: 1-7.
- 60 Dimova EY, Kietzmann T. Metabolic, hormonal and environmental regulation of plasminogen activator inhibitor-1 (PAI-1) expression: lessons from the liver. Thromb Haemost 2008; 100: 992-1006.
- 61 Brazionis L, Rowley K, Jenkins A. et al. Plasminogen activator inhibitor-1 activity in type 2 diabetes: a different relationship with coronary heart disease and diabetic retinopathy. Arterioscler Thromb Vasc Biol 2008; 28: 786-791.
- 62 Sawdey MS, Loskutoff DJ. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factoralpha, and transforming growth factor-beta. J Clin Invest 1991; 88: 1346-1353.
- 63 Schneider DJ, Sobel BE. Synergistic augmentation of expression of plasminogen activator inhibitor type-1 induced by insulin, very-low-density lipoproteins, and fatty acids. Coron Artery Dis 1996; 07: 813-817.
- 64 Loskutoff DJ, Samad F. The adipocyte and hemostatic balance in obesity: studies of PAI-1. Arterioscler Thromb Vasc Biol 1998; 18: 1-6.
- 65 Anderson TJ. Nitric oxide, atherosclerosis and the clinical relevance of endothelial dysfunction. Heart Fail Rev 2003; 08: 71-86.
- 66 Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med 2010; 38: S26-34.
- 67 Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005; 96: 939-949.
- 68 Duncan BB, Schmidt MI, Pankow JS. et al. Lowgrade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003; 52: 1799-1805.
- 69 Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005; 25: 2062-2068.
- 70 Alzahrani SH, Ajjan RA. Coagulation and fibrinolysis in diabetes. Diab Vasc Dis Res 2010; 07: 260-273.
- 71 Walport MJ. Complement. First of two parts. N Engl J Med 2001; 344: 1058-1066.
- 72 Ricklin D, Hajishengallis G, Yang K. et al. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11: 785-797.
- 73 Oikonomopoulou K, Ricklin D, Ward PA. et al. Interactions between coagulation and complement-their role in inflammation. Semin Immunopathol 2012; 34: 151-165.
- 74 Verschoor A, Langer HF. Crosstalk between platelets and the complement system in immune protection and disease. Thromb Haemost 2013; 110: 910-919.
- 75 Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol 2010; 47: 2170-2175.
- 76 Huber-Lang M, Sarma JV, Zetoune FS. et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 2006; 12: 682-687.
- 77 Nunez D, Charriaut-Marlangue C, Barel M. et al. Activation of human platelets through gp140, the C3d/EBV receptor (CR2). Eur J Immunol 1987; 17: 515-520.
- 78 Cosgrove LJ, d’Apice AJ, Haddad A. et al. CR3 receptor on platelets and its role in the prostaglandin metabolic pathway. Immunol Cell Biol 1987; 65: 453-460.
- 79 La Bonte LR, Pavlov VI, Tan YS. et al. Mannosebinding lectin-associated serine protease-1 is a significant contributor to coagulation in a murine model of occlusive thrombosis. J Immunol 2012; 188: 885-891.
- 80 Martel C, Cointe S, Maurice P. et al. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PLoS One 2011; 06: e18812.
- 81 Polley MJ, Nachman RL. Human platelet activation by C3a and C3a des-arg. J Exp Med 1983; 158: 603-615.
- 82 Del Conde I, Crúz MA, Zhang H. et al. Platelet activation leads to activation and propagation of the complement system. J Exp Med 2005; 201: 871-879.
- 83 Mnjoyan Z, Li J, Afshar-Kharghan V. Factor H binds to platelet integrin alphaIIbbeta3. Platelets 2008; 19: 512-519.
- 84 Engström G, Hedblad B, Eriksson KF. et al. Complement C3 is a risk factor for the development of diabetes: a population-based cohort study. Diabetes 2005; 54: 570-575.
- 85 Semeraro F, Ammollo CT, Morrissey JH. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118: 1952-1961.
- 86 Bosmann M, Grailer JJ, Ruemmler R. et al. Extracellular histones are essential effectors of C5aRand C5L2-mediated tissue damage and inflammation in acute lung injury. FASEB J 2013; 27: 5010-5021.
- 87 Gulla KC, Gupta K, Krarup A. et al. Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot. Immunology 2010; 129: 482-495.
- 88 Hess K, Ajjan R, Phoenix F. et al. Effects of MASP-1 of the complement system on activation of coagulation factors and plasma clot formation. PLoS One 2012; 07: e35690.
- 89 Krarup A, Wallis R, Presanis JS. et al. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS ONE 2007; 02: e623.
- 90 Dobó J, Schroeder V, Jenny L. et al. Multiple roles of complement MASP-1 at the interface of innate immune response and coagulation. Mol Immunol 2014; 61: 69-78.
- 91 Wuillemin WA, Minnema M, Meijers JC. et al. Inactivation of factor XIa in human plasma assessed by measuring factor XIa-protease inhibitor complexes: major role for C1-inhibitor. Blood 1995; 85: 1517-1526.
- 92 Distelmaier K, Adlbrecht C, Jakowitsch J. et al. Local complement activation triggers neutrophil recruitment to the site of thrombus formation in acute myocardial infarction. Thromb Haemost 2009; 102: 564-572.
- 93 Howes JM, Richardson VR, Smith KA. et al. Complement C3 is a novel plasma clot component with anti-fibrinolytic properties. Diab Vasc Dis Res 2012; 09: 216-225.
- 94 Hess K, Alzahrani S, Mathai M. et al. A novel mechanism for hypofibrinolysis in diabetes: The role of Complement C3. Diabetologia 2012; 55: 1103-1113.
- 95 Hess K, Alzahrani SH, Price JF. et al. Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3. Diabetologia 2014; 57: 1737-1741.
- 96 Schroeder V, Carter AM, Dunne J. et al. Pro-inflammatory and hypofibrinolytic phenotype in healthy first-degree relatives of patients with type 2 diabetes. J Thromb Haemost 2010; 08: 2080-2082.
- 97 Ritis K, Doumas M, Mastellos D. et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol 2006; 177: 4794-4802.
- 98 Markiewski MM, Nilsson B, Ekdahl KN. et al. Complement and coagulation: strangers or partners in crime?. Trends Immunol 2007; 28: 184-192.
- 99 Tokodai K, Goto M, Inagaki A. et al. Attenuation of cross-talk between the complement and coagulation cascades by C5a blockade improves early outcomes after intraportal islet transplantation. Transplantation 2010; 90: 1358-1365.
- 100 Tedesco F, Fischetti F, Pausa M. et al. Complement-endothelial cell interactions: pathophysiological implications. Mol Immunol 1999; 36: 261-268.