Subscribe to RSS
DOI: 10.5482/ha-1156
Aptamer-based modulation of blood coagulation
Aptamer-basierte Modulation der BlutgerinnungPublication History
received:
12 May 2011
accepted:
06 June 2011
Publication Date:
27 December 2017 (online)
Summary
Nucleic acid based aptamers are singlestranded oligonucleotide ligands isolated from random libraries by an in-vitro selection procedure. Through the formation of unique three-dimensional structures, aptamers are able to selectively interact with a variety of target molecules and are therefore also promising candidates for the development of anticoagulant drugs. While thrombin represents the most prominent enzymatic target in this field, also aptamers directed against other coagulation proteins and proteases have been identified with some currently being tested in clinical trials.
In this review, we summarize recent developments in the design and evaluation of aptamers for anticoagulant therapy and research.
Zusammenfassung
Auf Nukleinsäuren basierende Aptamere sind einzelsträngige Oligonukleotide, die durch einen In-vitro-Selektionsprozess aus randomisierten Nukleinsäurebibliotheken isoliert werden. Aufgrund ihrer dreidimensionalen Struktur können Aptamere selektiv mit diversen Zielmolekülen interagieren und repräsentieren somit eine viel versprechende Substanzklasse für die Entwicklung von Antikoagulanzien. Neben Thrombin, dem bisher am häufigsten verwendeten Zielmolekül in diesem Anwendungsgebiet, wurden Aptamere auch für andere Proteine und Proteasen aus der Blutgerinnungskaskade selektiert. Einige dieser Moleküle durchlaufen bereits klinische Studien.
In diesem Übersichtsartikel fassen wir die neuesten Entwicklungen hinsichtlich des Designs und der Evaluierung von Aptameren in den Gebieten der antikoagulatorischen Therapie und der Forschung zusammen.
-
References
- 1 Bock LC. et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992; 355: 564-566.
- 2 Padmanabhang K. et al. The structure of a thrombin inhibited by a 15-mer single-standed DNA aptamer. J Biol Chem 1993; 268: 17651-17654.
- 3 Lane DA, Philippou H, Huntington JA. Directing thrombin. Blood 2005; 106: 2605-2612.
- 4 Kretz CA. et al. HD1, a thrombin-directed aptamer, binds exosite 1 on prothrombin with high affinity and inhibits its activation by prothrombinase. J Biol Chem 2006; 281: 37477-37485.
- 5 Tasset DM, Kubik MK, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 1997; 272: 688-698.
- 6 Zingali RB. et al. Bothrojaracin, a new thrombin inhibitor isolated from Bothrops jararaca venom. Biochemistry 1993; 32: 10794-10802.
- 7 Arocas V. et al. Bothrojaracin: a potent two-site-directed thrombin inhibitor. Biochemistry 1996; 35: 9083-9089.
- 8 Müller J. et al. Multidomain targeting generates a high-affinity thrombin-inhibiting bivalent aptamer. Chembiochem 2007; 08: 2223-2226.
- 9 Müller J. et al. Anticoagulant characteristics of HD1–22, a bivalent aptamer that specifically inhibits thrombin and prothrombinase. J J Thromb Haemost 2008; 06: 2105-2112.
- 10 Hasegawa H. et al. Improvement of aptamer affinity by dimerization. Sensors 2008; 08: 1090-1098.
- 11 Kim Y, Cao Z, Tan W. Molecular assembly for highperformance bivalent nucleic acid inhibitor. Proc Natl Acad Sci USA 2008; 105: 5664-5669.
- 12 Müller J. et al. Profiling of in vivo thrombin activity via supramolecular complexes. Ang Chem 2011; 50: 6075-6078.
- 13 Becker RC. et al. Nucleic acid aptamers as antithrombotic agents. Thromb Haemost 2010; 103: 586-595.
- 14 White R. et al. Generation of species cross-reactive aptamers using “toggle” SELEX. Mol Ther 2001; 04: 567-573.
- 15 Long SB. et al. Crystal structure of an RNA aptamer bound to thrombin. RNA 2008; 14: 2504-2512.
- 16 Kaur H. et al. Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry 2006; 45: 7347-7355.
- 17 Virno A. et al. A novel thrombin binding aptamer containing a G-LNA residue. Bioorga Med Chem 2007; 15: 5710-5718.
- 18 Müller J. et al. An exosite-specific ssDNA aptamer inhibits the anticoagulant functions of activated protein C and enhances inhibition by protein C inhibitor. Chem Biol 2009; 16: 442-451.
- 19 Oney S. et al. Antidote-controlled platelet inhibition targeting von Willebrand factor with aptamers. Oligonucleotides 2007; 17: 265-274.
- 20 Oney S. et al. Development of universal antidotes to control aptamer activity. Nat Med 2009; 15: 1224-1228.
- 21 Heckel A, Mayer G. Light regulation of aptamer activity. J Am Chem Soc 2005; 127: 822-823.
- 22 Mayer G. et al. Light-induced formation of G-quadruplex DNA secondary structures. Chembiochem 2005; 06: 1966-1970.
- 23 Buff MC. et al. Dependence of aptamer activity on opposed terminal extensions. Nucleic Acids Res 2010; 38: 2111-2118.
- 24 Mayer G. et al. Differential regulation of protein subdomain activity with caged bivalent ligands. Chembiochem 2009; 10: 654-657.
- 25 Mayer G. et al. From selection to caged aptamers: identification of light-dependent ssDNA aptamers targeting cytohesin. Bioorg Med Chem Lett 2009; 19: 6561-6564.
- 26 Povsic TJ. et al. Translating nucleic acid aptamers to antithrombotic drugs in cardiovascular medicine. J Cardiovasc Transl Res 2010; 03: 704-716.
- 27 Rusconi CP. et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 2002; 419: 90-94.
- 28 Dyke CK. et al. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology. Circulation 2006; 114: 2490-2497.
- 29 Chan MY, Andreotti F, Becker RC. Hypercoagulable states in cardiovascular disease. Circulation 2008; 118: 2286-2297.
- 30 Cohen MG. et al. First clinical application of an actively reversible direct factor IXa inhibitor as an anticoagulation strategy in patients undergoing percutaneous coronary intervention. Circulation 2010; 122: 614-622.
- 31 Chan MY. et al. A randomized, repeat-dose, pharmacodynamic and safety study of an antidote-controlled factor IXa inhibitor. J Thromb Haemost 2008; 06: 789-796.
- 32 Chan MY. et al. Phase 1b randomized study of antidote-controlled modulation of factor IXa activity in patients with stable coronary artery disease. Circulation 2008; 117: 2865-2874.
- 33 Hughes S. RADAR: First significant clinical use of novel reversible anticoagulation system. http://www.theheart.org/article/1208729.do 2011 .
- 34 Povsic TJ. et al. A randomized, partially blinded, multicenter, active-controlled, dose-ranging study assessing the safety, efficacy, and pharmacodynamics of the REG1 anticoagulation system in patients with acute coronary syndromes. Am Heart J 2011; 161: 261-268 e1–2.
- 35 Gilbert JC. et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 2007; 116: 2678-2686.
- 36 Jilma B. et al. A randomised pilot trial of the antivon Willebrand factor aptamer ARC1779 in patients with type 2b von Willebrand disease. Thromb Haemost 2010; 104: 563-570.
- 37 Mayr FB. et al. The aptamer ARC1779 blocks von Willebrand factor-dependent platelet function in patients with thrombotic thrombocytopenic purpura ex vivo. Transfusion 2010; 50: 1079-1087.
- 38 Jilma-Stohlawetz P. et al. Inhibition of von Willebrand factor by ARC1779 in patients with acute thrombotic thrombocytopenic purpura. Thromb Haemost 2011; 105: 545-552.
- 39 Gomez-Outes A. et al. New parenteral anticoagulants in development. Ther Adv Cardiovasc Dis 2011; 05: 33-59.