Tierarztl Prax Ausg G Grosstiere Nutztiere 2019; 47(06): 380-389
DOI: 10.1055/a-1037-9173
Übersichtsartikel

Übersicht zu Zusammenhängen zwischen Änderungen der Bewegungsintensität und Ketose bei Milchkühen

Overview on the relationship between changes in activity and ketosis in dairy cows
Franziska Hajek
Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München
,
Rolf Mansfeld
Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München
› Author Affiliations

Zusammenfassung

Mit einer Prävalenz von bis zu 43 % zählt die subklinische Ketose zu den häufigsten Erkrankungen von Milchkühen in der Transitphase. Sie kann ihrerseits Auslöser für Folgeerkrankungen wie klinische Ketose oder Lahmheit sein. Eine Überwachung der Tiere in dieser Phase ist sehr wichtig. Hierzu eignen sich außer der Bestimmung von β-Hydroxybutyrat bzw. Actetoacetat in Blut, Milch und Harn sowie der Beobachtung der Tiere auch computergestützte Systeme. Dafür werden Daten, wie die Tieridentifikation und Aktivitätsdaten, auf einem Datenlogger aufgezeichnet und gespeichert und an einen Computer übermittelt. Eine Änderung der Aktivität kann schon Tage vor dem Auftreten anderer Symptome ein Hinweis auf eine zugrundeliegende Krankheit sein. Im Zusammenhang mit Ketose lässt sich schon 5 Tage vor der klinischen Diagnose eine Aktivitätsabnahme beobachten. So leisten diese Daten einen wertvollen Beitrag für Landwirt und Tierarzt zur Überwachung des Gesundheitszustands der Herde. Auch für die Erkennung einer beginnenden Lahmheit kann die Aktivitätsmessung eingesetzt werden. Bei vorliegender Lahmheit nimmt die Bewegungsaktivität ab und die Liegeperioden werden länger. Die Aktivitätsmessung über den Transponder gibt im Rahmen eines Herdenmonitorings wichtige Hinweise auf die Lahmheitsprävalenz in einer Herde. Zusätzlich zur Aktivitätsmessung sollte eine visuelle Beurteilung durchgeführt werden. Hierzu wurden Lahmheitsscores (Locomotion Score, Gait Score) entwickelt, anhand derer der Lahmheitsstatus der Herde erhoben werden kann. Damit lassen sich die Tiere in Lahmheitsklassen einteilen und dadurch werden die Tiere erkannt, die einer Klauenpflege oder Behandlung unterzogen werden sollten, um Folgeerkrankungen zu reduzieren oder zu vermeiden. Plausibel ist, dass die Tiere aufgrund der Lahmheit, der damit einhergehenden reduzierten Aktivität und der daraus folgenden verminderten Futteraufnahme eine subklinische oder klinische Ketose entwickeln. Sowohl aus Sicht der Tiergesundheit als auch aus wirtschaftlichen Gründen ist eine frühzeitige Krankheitserkennung und -prophylaxe wünschenswert und sollte deshalb Ziel eines Herdenmonitorings sein.

Abstract

With a prevalence of up to 43 % subclinical ketosis is one of the most common diseases in dairy cows in their transition period. In itself, this may cause subsequent diseases such as clinical ketosis or lameness. Therefore, monitoring of animals in this stage is of importance. In addition to the measurement of β-hydroxybutyrate or acetoacetate in blood, milk, and urine as well as the observation of the animals, computer-assisted systems are suitable means of monitoring. Information such as animal identification and activity data are recorded on a data logger and transmitted to a computer. A change in activity may be an indication of an underlying disease days before the onset of additional clinical signs. In cases of ketosis, a decrease in activity may be observed 5 days before the clinical diagnosis is made. Thus, these data are a valuable contribution in monitoring the cattle herd’s health status for both the farmer and the veterinarian. Activity measurement may also be employed for the detection of a beginning lameness. In the presence of lameness, the individual’s activity decreases and periods of lying are longer. Activity measurement via transponder as a part of the herd monitoring provides important information on lameness prevalence in the herd. In the presence of a lameness a visual assessment should additionally be made. Lameness scores (Locomotion score, Gait score) have been developed for this purpose and add to determining the lameness status of the herd. This way the animals are divided into different lameness classes. Based on this classification those individuals in need of claw trimming or further treatment may be identified leading to amelioration or prevention of secondary diseases. Due to lameness and subsequent reduction of activity and feed intake, the animals may develop subclinical or clinical ketosis. Therefore, under consideration of both animal welfare and economic factors early disease detection and prophylaxis is desirable and should be a main objective of herd monitoring.



Publication History

Received: 21 September 2019

Accepted: 29 October 2019

Article published online:
06 December 2019

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Alsaaod M, Fadul M, Steiner A. Automatic lameness detection in cattle. Vet J 2019; 246: 35-44
  • 2 Andersson L. Subclinical ketosis in dairy cows. Vet Clin North Am: Food Anim Pract 1988; 4: 233-251
  • 3 Baird GD. Primary ketosis in the high-producing dairy cow: Clinical and subclinical disorders, treatment, prevention, and outlook. J Dairy Sci 1982; 65: 1-10
  • 4 Barker ZE, Leach KA, Whay HR. et al. Assessment of lameness prevalence and associated risk factors in dairy herds in England and Wales. J Dairy Sci 2010; 93: 932-941
  • 5 Beer G, Alsaaod M, Starke A. et al. Use of extended characteristics of locomotion and feeding behavior for automated identification of lame dairy cows. Plos One 2016; 11: 1-18
  • 6 Bell AW. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J Anim Sci 1995; 73: 2804-2819
  • 7 Berge AC, Vertenten G. A field study to determine the prevalence, dairy herd management systems, and fresh cow clinical conditions associated with ketosis in western European dairy herds. J Dairy Sci 2014; 97: 2145-2154
  • 8 Booth CJ, Warnick LD, Groehn YT. et al. Effect of lameness on culling in dairy cows. J Dairy Sci 2004; 87: 4115-4122
  • 9 Calderon DF, Cook NB. The effect of lameness on the resting behavior and metabolic status of dairy cattle during the transition period in a freestall-housed dairy herd. J Dairy Sci 2011; 94: 2883-2894
  • 10 Carrier J, Stewart S, Godden S. et al. Evaluation and use of three cowside tests for detection of subclinical ketosis in early postpartum cows. J Dairy Sci 2004; 87: 3725-3735
  • 11 Castillo C, Hernandez J, Bravo A. et al. Oxidative status during late pregnancy and early lactation in dairy cows. Vet J 2005; 169: 286-292
  • 12 Chapinal N, de Passille AM, Rushen J. et al. Automated methods for detecting lameness and measuring analgesia in dairy cattle. J Dairy Sci 2010; 93: 2007-2013
  • 13 Cook N, Oetzel G, Nordlund K. Modern techniques for monitoring high-producing dairy cows 1. Principles of herd-level diagnosis. Farm Anim Pract 2006; 28: 510-515
  • 14 Desrochers A, Anderson DE, St-Jean G. Lameness examination in cattle. Vet Clin North Am: Food Anim Pract 2001; 17: 39-51
  • 15 Dippel S, Dolezal M, Brenninkmeyer C. et al. Risk factors for lameness in freestall-housed dairy cows across two breeds, farming systems, and countries. J Dairy Sci 2009; 92: 5476-5586
  • 16 Dohoo IR, Martin SW. Disease, production and culling in Holstein-Friesian cows. III. Disease and production as determinants of disease. Prev Vet Med 1984; 2: 671-690
  • 17 Dohoo IR, Martin SW. Subclinical ketosis: Prevalence and associations with production and disease. Can J Comp Med 1984; 48: 1-5
  • 18 Duffield TF, Sandals D, Leslie KE. et al. Efficacy of monensin for the prevention of subclinical ketosis in lactating dairy cows. J Dairy Sci 1998; 81: 2866-2873
  • 19 Duffield TF, Lissemore KD, McBride BW. et al. Impact of hyperketonemia in early lactation dairy cows on health and production. J Dairy Sci 2009; 92: 571-580
  • 20 Duffield TF, LeBlanc SJ. Interpretation of serum metabolic parameters around the transition period. Proceedings, Southwest Nutrition and Management Conference. 2009: 106-114
  • 21 Edwards JL, Tozer PR. Using activity and milk yield as predictors of fresh cow disorders. J Dairy Sci 2004; 87: 524-531
  • 22 Goff JP, Horst RL. Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci 1997; 80: 1260-1268
  • 23 González L, Tolkamp B, Coffey M. et al. Changes in feeding behavior as possible indicators for the automatic monitoring of health disorders in dairy cows. J Dairy Sci 2008; 91: 1017-1028
  • 24 Green LE, Hedges VJ, Schukken YH. et al. The impact of clinical lameness on the milk yield of dairy cows. J Dairy Sci 2002; 85: 2250-2256
  • 25 Grummer RR. Nutritional and management strategies for the prevention of fatty liver in dairy cattle. Vet J 2008; 176: 10-20
  • 26 Hernandez JA, Garbarino EJ, Shearer JK. et al. Evaluation of the efficacy of prophylactic hoof health examination and trimming during midlactation in reducing the incidence of lameness during late lactation in dairy cows. J Am Vet Med Assoc 2007; 230: 89-93
  • 27 Itle AJ, Huzzey JM, Weary DM. et al. Clinical ketosis and standing behavior in transition cows. J Dairy Sci 2015; 98: 128-134
  • 28 Iwersen M, Falkenberg U, Voigtsberger R. et al. Evaluation of an electronic cowside test to detect subclinical ketosis in dairy cows. J Dairy Sci 2009; 92: 2618-2624
  • 29 Iwersen M, Klein-Jobstl D, Pichler M. et al. Comparison of 2 electronic cowside tests to detect subclinical ketosis in dairy cows and the influence of the temperature and type of blood sample on the test results. J Dairy Sci 2013; 96: 7719-7730
  • 30 Kaufman EI, LeBlanc SJ, McBride BW. et al. Short communication: Association of lying behavior and subclinical ketosis in transition dairy cows. J Dairy Sci 2016; 99: 7473-7480
  • 31 King MTM, LeBlanc SJ, Pajor EA. et al. Behavior and productivity of cows milked in automated systems before diagnosis of health disorders in early lactation. J Dairy Sci 2018; 101: 4343-4356
  • 32 Liboreiro DN, Machado KS, Silva PR. et al. Characterization of peripartum rumination and activity of cows diagnosed with metabolic and uterine diseases. J Dairy Sci 2015; 98: 6812-6827
  • 33 Lucey S, Rowlands G, Russell A. The association between lameness and fertility in dairy cows. Vet Rec 1986; 118: 628-631
  • 34 Mahrt A, Burfeind O, Voigtsberger R. et al. Evaluation eines neuen elektronischen Handmessgeräts zur Messung von β-Hydroxybutyrat bei Milchkühen. Tierärztl Prax Großtiere 2014; 42: 5-10
  • 35 Mahrt A, Burfeind O, Heuwieser W. Evaluation of hyperketonemia risk period and screening protocols for early-lactation dairy cows. J Dairy Sci 2015; 98: 3110-3119
  • 36 Mansfeld R. Therapiefreiheit – auch nach 100 Jahren ein hohes Gut. Prakt Tierarzt 2019; 100: 1076-1080
  • 37 McArt JAA, Nydam DV, Oetzel GR. Epidemiology of subclinical ketosis in early lactation dairy cattle. J Dairy Sci 2012; 95: 5056-5066
  • 38 Munksgaard L, Jensen MB, Pedersen LJ. et al. Quantifying behavioural priorities – Effects of time constraints on behaviour of dairy cows, Bos taurus. Appl Anim Behav Sci 2005; 92: 3-14
  • 39 Nielen M, Aarts MGA, Jonkers AGM. et al. Evaluation of two cowside tests for the detection of subclinical ketosis in dairy cows. Can Vet J 1994; 35: 229-232
  • 40 Nielsen C, Stengärde L, Bergsten C. et al. Relationship between herd-level incidence rate of energy-related postpartum diseases, general risk factors and claw lesions in individual dairy cows recorded at maintenance claw trimming. Acta Vet Scand 2013; 55: 1-10
  • 41 Oetzel GR. Monitoring and testing dairy herds for metabolic disease. Vet Clin North Am: Food Anim Pract 2004; 20: 651-674
  • 42 Raboisson D, Mounie M, Maigne E. Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: a meta-analysis and review. J Dairy Sci 2014; 97: 7547-7563
  • 43 Reader JD, Green MJ, Kaler J. et al. Effect of mobility score on milk yield and activity in dairy cattle. J Dairy Sci 2011; 94: 5045-5052
  • 44 Rutten CJ, Velthuis AGJ, Steeneveld W. et al. Invited review: Sensors to support health management on dairy farms. J Dairy Sci 2013; 96: 1928-1952
  • 45 Sepulveda-Varas P, Weary DM, von Keyserlingk MA. Lying behavior and postpartum health status in grazing dairy cows. J Dairy Sci 2014; 97: 6334-6343
  • 46 Sprecher DJ, Hostetler DE, Kaneene JB. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology 1997; 14: 1179-1187
  • 47 Stangaferro ML, Wijma R, Caixeta LS. et al. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. J Dairy Sci 2016; 99: 7395-7410
  • 48 Suthar VS, Canelas-Raposo J, Deniz A. et al. Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. J Dairy Sci 2013; 96: 2925-2938
  • 49 Tomaszewski MA. Record-keeping systems and control of data flow and information retrieval to manage large high producing herds. J Dairy Sci 1993; 76: 3188-3194
  • 50 Tremblay M, Kammer M, Lange H. et al. Identifying poor metabolic adaptation during early lactation in dairy cows using cluster analysis. J Dairy Sci 2018; 101: 7311-7321
  • 51 Van De Gucht T, Saeys W, Van Meensel J. et al. Farm-specific economic value of automatic lameness detection systems in dairy cattle: From concepts to operational simulations. J Dairy Sci 2018; 101: 637-648
  • 52 Warnick LD, Janssen D, Guard CL. et al. The effect of lameness on milk production in dairy cows. J Dairy Sci 2001; 84: 1988-1997
  • 53 Williams J, Ntallaris T, Routly JE. et al. Association of production diseases with motor activity-sensing devices and milk progesterone concentrations in dairy cows. Theriogenology 2018; 118: 57-62