Anästhesiol Intensivmed Notfallmed Schmerzther 2021; 56(05): 329-341
DOI: 10.1055/a-1189-8031
Topthema
CME-Fortbildung

Intraoperative Strategien für die Ein-Lungen-Ventilation

Intraoperative Ventilation Approaches to One-lung Ventilation
Astrid Bergmann
,
Thomas Schilling

Zusammenfassung

Das Management der Ein-Lungen-Ventilation (ELV) beinhaltet mehrere Herausforderungen. Diese umfassen die adäquate Oxygenierung und Ventilation und den Schutz der Lunge vor pathophysiologischen Noxen zur Vermeidung postoperativer pulmonaler Komplikationen. Während der ELV wird die Belüftung des zu operierenden Lungenflügels durch verschiedene Techniken unterbrochen, während die Perfusion in vermindertem Umfang erhalten bleibt. Das entsprechende Tidalvolumen (VT) wird somit lediglich einer Lunge zugeführt.

Die derzeitigen Empfehlungen zur Aufrechterhaltung des Gasaustausches und die lungenprotektiven Maßnahmen können sich diametral widersprechen, wie z. B. die Applikation einer hohen vs. niedrigen inspiratorischen Sauerstofffraktion (FiO2) oder die eines hohen vs. niedrigen Atemzugvolumens. Angesichts der limitierten Evidenz beleuchtet diese Arbeit aktuelle intraoperative Strategien für die ELV, welche die Reduktion der FiO2, ein niedriges VT, die Applikation eines positiven endexspiratorischen Druckes (PEEP) in der ventilierten Lunge und eines kontinuierlichen positiven Atemwegsdruckes (CPAP) in der nicht ventilierten Lunge sowie alveoläre Rekrutierungsmanöver umfassen. Weitere Ansätze, wie die Wahl des Anästhesieverfahrens, die ischämische Präkonditionierung, das hämodynamische Management und die Volumentherapie sowie die postoperative Schmerztherapie können die lungenprotektiven Strategien unterstützen und das klinische Ergebnis verbessern.

Das Management der Ein-Lungen-Ventilation (ELV) beinhaltet mehrere Herausforderungen: adäquate Oxygenierung und Ventilation sowie Schutz der Lunge vor pathophysiologischen Noxen, um postoperative Komplikationen zu vermeiden. Die derzeitigen Empfehlungen zur Aufrechterhaltung des Gasaustausches und die lungenprotektiven Maßnahmen können sich dabei diametral widersprechen. Dieser Beitrag beleuchtet aktuelle intraoperative Strategien für die ELV.

Abstract

The management of thoracic surgery patients is challenging to the anesthetist, since one-lung ventilation (OLV) includes at least two major conditions: sufficient oxygenation and lung protection. The first is mainly because the ventilation of one lung is stopped while perfusion to that lung continues; the latter is related to the fact that the whole ventilation is applied to only a single lung. Recommendations for maintaining the oxygenation and methods of lung protection may contradict each other (e. g. high vs. low inspiratory oxygen fraction (FiO2), high vs. low tidal volume, etc.). Therefore, a high degree of pathophysiological understanding and manual skills are required in the management of these patients.

In light of recent clinical studies, this review focuses on a current protective strategy for OLV, which includes a possible decrease in FiO2, lowered VT, the application of positive end-expiratory pressure (PEEP) to the dependent and continuous positive airway pressure (CPAP) to the non-dependent lung and alveolar recruitment manoeuvres as well. Other approaches such as the choice of anaesthetics, remote ischemic preconditioning, fluid management and pain therapy can support the success of ventilatory strategy. The present work describes new developments that may change the classical approach in this respect.

Kernaussagen
  • Die optimale Durchführung der ELV im Rahmen thoraxchirurgischer Eingriffe beinhaltet folgende Herausforderungen:

    • Die zentrale Aufgabe ist die Sicherstellung des Gasaustauschs.

    • Die Applikation des gesamten VT in eine Lunge kann durch die vermehrte Beimischung von venösem Blut in einer Hypoxämie resultieren.

    • Die ELV induziert ein alveoläres Trauma infolge der erhöhten mechanischen Belastung der ventilierten Lunge, erkennbar an erhöhten Atemwegsdrücken („driving pressure“).

    • Die ventilationsinduzierte pulmonale Schädigung ist eine wesentliche Determinante einer erhöhten pulmonalen Morbidität und Mortalität selbst bei zuvor lungengesunden Patienten.

  • Lungenprotektive Ansätze zur Vermeidung des akuten Lungenschadens und einer Verbesserung der Oxygenierung wurden an die Empfehlungen der ARDS-Therapie angelehnt.

  • Die sinnvolle Kombination verschiedener Maßnahmen – wie die Ventilation mit einem niedrigen VT, die Anwendung alveolärer Rekrutierungsmanöver und die Applikation eines suffizienten PEEP in der ventilierten Lunge – sichert einen adäquaten Gasaustausch und reduziert den mechanischen Stress der Lunge. In der Folge vermindert sich die alveoläre Immunreaktion nach der ELV.

  • Der Modus der Ventilation ist wahrscheinlich von geringerer Bedeutung als die Sicherstellung eines möglichst niedrigen effektiven Atemwegsdrucks.

  • Die Applikation eines CPAP in der nicht ventilierten Lunge ist eine effektive Methode zur Reduktion der sicheren inspiratorischen Sauerstoffkonzentration und Verminderung der mechanischen Belastung der Lunge. Sie kann aber nur in enger Kooperation mit dem chirurgischen Vorgehen erfolgen.

  • Inhalationsanästhetika wie Desfluran oder Sevofluran besitzen möglicherweise klinische Vorteile gegenüber i. v. Anästhetika während und nach der ELV.

  • Inwieweit einzelne oder Kombinationen dieser Maßnahmen postoperative Komplikationen verringern und das individuelle Ergebnis verbessern, muss in weiteren prospektiven Studien überprüft werden.



Publication History

Article published online:
26 May 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 OʼSullivan KE. et al. A systematic review of robotic versus open and video assisted thoracoscopic surgery (VATS) approaches for thymectomy. Ann Cardiothorac Surg 2019; 8: 174-193
  • 2 Cohen E. Recommendations for airway control and difficult airway management in thoracic anesthesia and lung separation procedures. Are we ready for the challenge?. Minerva Anestesiol 2009; 75: 3-5
  • 3 Veronesi G. et al. Robot-assisted surgery for lung cancer: State of the art and perspectives. Lung Cancer 2016; 101: 28-34
  • 4 Kozian A. et al. One-lung ventilation induces hyperperfusion and alveolar damage in the ventilated lung: an experimental study. Br J Anaesth 2008; 100: 549-559
  • 5 Hedenstierna G. et al. Correlation of gas exchange impairment to development of atelectasis during anaesthesia and muscle paralysis. Acta Anaesthesiol Scand 1986; 30: 183-191
  • 6 Campos JH. et al. Hypoxia during one-lung ventilation-a review and update. J Cardiothorac Vasc Anesth 2018; 32: 2330-2338
  • 7 Karzai W. et al. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology 2009; 110: 1402-1411
  • 8 Benumof JL. One-lung ventilation and hypoxic pulmonary vasoconstriction: implications for anesthetic management. Anesth Analg 1985; 64: 821-833
  • 9 Brodsky JB. et al. Modern anesthetic techniques for thoracic operations. World J Surg 2001; 25: 162-166
  • 10 Licker M. et al. Acute lung injury and outcomes after thoracic surgery. Curr Opin Anaesthesiol 2009; 22: 61-67
  • 11 Jeon K. et al. Risk factors for post-pneumonectomy acute lung injury/acute respiratory distress syndrome in primary lung cancer patients. Anaesth Intensive Care 2009; 37: 14-19
  • 12 Kozian A. et al. Lung computed tomography density distribution in a porcine model of one-lung ventilation. Br J Anaesth 2009; 102: 551-560
  • 13 Lohser J. et al. Lung injury after one-lung ventilation: A review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg 2015; 121: 302-318
  • 14 Ishikawa S. et al. One-lung ventilation and arterial oxygenation. Curr Opin Anaesthesiol 2011; 24: 24-31
  • 15 Serpa Neto A. et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med 2014; 2: 1007-1015
  • 16 Hedenstierna G. Causes of gas exchange impairment during general anaesthesia. Eur J Anaesthesiol 1988; 5: 221-231
  • 17 Lumb AB. et al. Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology 2015; 122: 932-946
  • 18 Conacher ID. 2000 – time to apply Occamʼs razor to failure of hypoxic pulmonary vasoconstriction during one lung ventilation. Br J Anaesth 2000; 84: 434-436
  • 19 Klingstedt C. et al. Ventilation-perfusion relationships and atelectasis formation in the supine and lateral positions during conventional mechanical and differential ventilation. Acta Anaesthesiol Scand 1990; 34: 421-429
  • 20 Bardoczky GI. et al. Two-lung and one-lung ventilation in patients with chronic obstructive pulmonary disease: The effects of position and F10(2). Anesth Analg 2000; 90: 35-41
  • 21 Szegedi LL. et al. Gravity is an important determinant of oxygenation during one-lung ventilation. Acta Anaesthesiol Scand 2010; 54: 744-750
  • 22 Glenny R. Counterpoint: Gravity is not the major factor determining the distribution of blood flow in the healthy human lung. J Appl Physiol (1985) 2008; 104: 1533-1535
  • 23 Glenny RW. Determinants of regional ventilation and blood flow in the lung. Intensive Care Med 2009; 35: 1833-1842
  • 24 Campos JH. et al. Devices for lung isolation used by anesthesiologists with limited thoracic experience: comparison of double-lumen endotracheal tube, Univent torque control blocker, and Arndt wire-guided endobronchial blocker. Anesthesiology 2006; 104: 261-266
  • 25 Varma S. et al. Intraoperative bronchoscopy prevents hypoxaemia during one-lung ventilation for second-stage oesophagectomy: A prospective cohort study. Eur J Anaesthesiol 2010; 27: 919-921
  • 26 Tekinbas C. et al. One-lung ventilation: for how long?. J Thorac Cardiovasc Surg 2007; 134: 405-410
  • 27 De Conno E. et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology 2009; 110: 1316-1326
  • 28 Funakoshi T. et al. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs. Br J Anaesth 2004; 92: 558-563
  • 29 Padley SP. et al. Asymmetric ARDS following pulmonary resection: CT findings initial observations. Radiology 2002; 223: 468-473
  • 30 Grichnik KP. et al. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Semin Cardiothorac Vasc Anesth 2004; 8: 317-334
  • 31 Bigatello LM. et al. Acute lung injury after pulmonary resection. Minerva Anestesiol 2004; 70: 159-166
  • 32 Kozian A. et al. Increased alveolar damage after mechanical ventilation in a porcine model of thoracic surgery. J Cardiothorac Vasc Anesth 2010; 24: 617-623
  • 33 Slinger P. et al. Perioperative lung protection strategies in cardiothoracic anesthesia: are they useful?. Anesthesiol Clin 2012; 30: 607-628
  • 34 Licker M. et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg 2003; 97: 1558-1565
  • 35 Sen S. et al. Postresectional lung injury in thoracic surgery pre and intraoperative risk factors: a retrospective clinical study of a hundred forty-three cases. J Cardiothorac Surg 2010; 5: 62
  • 36 Slinger PD. Perioperative fluid management for thoracic surgery: the puzzle of postpneumonectomy pulmonary edema. J Cardiothorac Vasc Anesth 1995; 9: 442-451
  • 37 Slinger PD. Acute lung injury after pulmonary resection: more pieces of the puzzle. Anesth Analg 2003; 97: 1555-1557
  • 38 Magnusson L. et al. New concepts of atelectasis during general anaesthesia. Br J Anaesth 2003; 91: 61-72
  • 39 Hedenstierna G. et al. Effects of anesthesia on the respiratory system. Best Pract Res Clin Anaesthesiol 2015; 29: 273-284
  • 40 Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301-1308
  • 41 Severgnini P. et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology 2013; 118: 1307-1321
  • 42 Hemmes SN. et al. Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anaesthesiol 2013; 26: 126-133
  • 43 Schilling T. et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg 2005; 101: 957-965
  • 44 Licker M. et al. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care 2009; 13: R41
  • 45 Fernandez-Perez ER. et al. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology 2006; 105: 14-18
  • 46 Vegh T. et al. Effects of different tidal volumes for one-lung ventilation on oxygenation with open chest condition and surgical manipulation: a randomised cross-over trial. Minerva Anestesiol 2013; 79: 24-32
  • 47 Kim SH. et al. Effects of tidal volume and PEEP on arterial blood gases and pulmonary mechanics during one-lung ventilation. J Anesth 2012; 26: 568-573
  • 48 Serpa Neto A. et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 2012; 308: 1651-1659
  • 49 Della Rocca G. et al. Acute lung injury in thoracic surgery. Curr Opin Anaesthesiol 2013; 26: 40-46
  • 50 Slinger PD. et al. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology 2001; 95: 1096-1102
  • 51 Spadaro S. et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology 2018; 128: 531-538
  • 52 Ferrando C. et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation. Anesth Analg 2014; 118: 657-665
  • 53 Kiss T. et al. Protective ventilation with high versus low positive end-expiratory pressure during one-lung ventilation for thoracic surgery (PROTHOR): study protocol for a randomized controlled trial. Trials 2019; 20: 213
  • 54 Senturk M. et al. [A comparison of the effects of 50 % oxygen combined with CPAP to the non-ventilated lung vs. 100 % oxygen on oxygenation during one-lung ventilation]. Anasthesiol Intensivmed Notfallmed Schmerzther 2004; 39: 360-364
  • 55 Grichnik KP. et al. Update on one-lung ventilation: the use of continuous positive airway pressure ventilation and positive end-expiratory pressure ventilation – clinical application. Curr Opin Anaesthesiol 2009; 22: 23-30
  • 56 Verhage RJ. et al. Reduced local immune response with continuous positive airway pressure during one-lung ventilation for oesophagectomy. Br J Anaesth 2014; 112: 920-928
  • 57 El Tahan MR. et al. Effects of nondependent lung ventilation with continuous positive-pressure ventilation and high-frequency positive-pressure ventilation on right-ventricular function during 1-lung ventilation. Semin Cardiothorac Vasc Anesth 2010; 14: 291-300
  • 58 Ng JM. Hypoxemia during one-lung ventilation: jet ventilation of the middle and lower lobes during right upper lobe sleeve resection. Anesth Analg 2005; 101: 1554-1555
  • 59 Rothen HU. et al. Dynamics of re-expansion of atelectasis during general anaesthesia. Br J Anaesth 1999; 82: 551-556
  • 60 Kozian A. et al. Ventilatory protective strategies during thoracic surgery: effects of alveolar recruitment maneuver and low-tidal volume ventilation on lung density distribution. Anesthesiology 2011; 114: 1025-1035
  • 61 Tusman G. et al. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg 2004; 98: 1604-1609
  • 62 Unzueta C. et al. Alveolar recruitment improves ventilation during thoracic surgery: a randomized controlled trial. Br J Anaesth 2012; 108: 517-524
  • 63 Miura Y. et al. Effects of alveolar recruitment maneuver on end-expiratory lung volume during one-lung ventilation. J Anesth 2020; 34: 224-231
  • 64 Schilling T. et al. The immune response to one-lung-ventilation is not affected by repeated alveolar recruitment manoeuvres in pigs. Minerva Anestesiol 2013; 79: 590-603
  • 65 Jordan S. et al. The pathogenesis of lung injury following pulmonary resection. Eur Respir J 2000; 15: 790-799
  • 66 Li J. et al. Pressure-controlled ventilation-volume guaranteed mode combined with an open-lung approach improves lung mechanics, oxygenation parameters, and the inflammatory response during one-lung ventilation: A randomized controlled trial. Biomed Res Int 2020; 2020: 1403053
  • 67 Tugrul M. et al. Comparison of volume controlled with pressure controlled ventilation during one-lung anaesthesia. Br J Anaesth 1997; 79: 306-310
  • 68 Unzueta MC. et al. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation for thoracic surgery. Anesth Analg 2007; 104: 1029-1033
  • 69 Al Shehri AM. et al. Right ventricular function during one-lung ventilation: effects of pressure-controlled and volume-controlled ventilation. J Cardiothorac Vasc Anesth 2014; 28: 880-884
  • 70 Amato MB. et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372: 747-755
  • 71 Das A. et al. What links ventilator driving pressure with survival in the acute respiratory distress syndrome? A computational study. Respir Res 2019; 20: 29
  • 72 Yang M. et al. Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: A randomized controlled trial. Chest 2011; 139: 530-537
  • 73 Carvalho AR. et al. Distribution of regional lung aeration and perfusion during conventional and noisy pressure support ventilation in experimental lung injury. J Appl Physiol (1985) 2011; 110: 1083-1092
  • 74 Kidane B. et al. Use of lung-protective strategies during one-lung ventilation surgery: a multi-institutional survey. Ann Transl Med 2018; 6: 269
  • 75 Senturk M. et al. Intraoperative mechanical ventilation strategies for one-lung ventilation. Best Pract Res Clin Anaesthesiol 2015; 29: 357-369
  • 76 Schilling T. et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth 2007; 99: 368-375
  • 77 Karzai W. et al. Effects of desflurane and propofol on arterial oxygenation during one-lung ventilation in the pig. Acta Anaesthesiol Scand 1998; 42: 648-652
  • 78 Ng A. et al. Hypoxaemia associated with one-lung anaesthesia: new discoveries in ventilation and perfusion. Br J Anaesth 2011; 106: 761-763
  • 79 Schilling T. et al. Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients. Anesthesiology 2011; 115: 65-74
  • 80 Sun B. et al. Effects of volatile vs. propofol-based intravenous anesthetics on the alveolar inflammatory responses to one-lung ventilation: a meta-analysis of randomized controlled trials. J Anesth 2015; 29: 570-579
  • 81 Piccioni F. et al. Recommendations from the Italian intersociety consensus on Perioperative Anesthesia Care in Thoracic surgery (PACTS) part 1: preadmission and preoperative care. Perioper Med (Lond) 2020; 9: 37
  • 82 Beck-Schimmer B. et al. Which anesthesia regimen is best to reduce morbidity and mortality in lung surgery?: a multicenter randomized controlled trial. Anesthesiology 2016; 125: 313-321
  • 83 Chappell D. et al. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology 2011; 115: 483-491
  • 84 Bergmann A. et al. Pulmonary effects of remote ischemic preconditioning in a porcine model of ventilation-induced lung injury. Respir Physiol Neurobiol 2019; 259: 111-118
  • 85 Bergmann A. et al. Effect of remote ischemic preconditioning on exhaled nitric oxide concentration in piglets during and after one-lung ventilation. Respir Physiol Neurobiol 2020; 276: 103426
  • 86 Bergmann A. et al. Early and late effects of remote ischemic preconditioning on spirometry and gas exchange in healthy volunteers. Respir Physiol Neurobiol 2020; 271: 103287