Nuklearmedizin 2021; 60(01): 25-32
DOI: 10.1055/a-1270-5568
Original Article

Tumor heterogeneity for differentiation between liver tumors and normal liver tissue in 18F-FDG PET/CT

Tumorheterogenität zur Differenzierung zwischen Lebertumoren und gesundem Lebergewebe in 18F-FDG-PET/CT
Lynn Hartmann
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany
,
Lena Bundschuh
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany
,
Norbert Zsótér
2   Mediso Medical Imaging Systems Ltd., Budapest, Hungary
,
Markus Essler
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany
,
Ralph Alexander Bundschuh
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany
› Institutsangaben

Abstract

Aim Malignancies show higher spatial heterogeneity than normal tissue. We investigated, if textural parameters from FDG PET describing the heterogeneity function as tool to differentiate between tumor and normal liver tissue.

Methods FDG PET/CT scans of 80 patients with liver metastases and 80 patients with results negative upper abdominal organs were analyzed. Metastases and normal liver tissue were analyzed drawing up to three VOIs with a diameter of 25 mm in healthy liver tissue of the tumoral affected and results negative liver, whilst up to 3 metastases per patient were delineated. Within these VOIs 30 different textural parameters were calculated as well as SUV. The parameters were compared in terms of intra-patient and inter-patient variability (2-sided t test). ROC analysis was performed to analyze predictive power and cut-off values.

Results 28 textural parameters differentiated healthy and pathological tissue (p < 0.05) with high sensitivity and specificity. SUV showed ability to differentiate but with a lower significance. 15 textural parameters as well as SUV showed a significant variation between healthy tissues out of tumour infested and negative livers. Mean intra- and inter-patient variability of metastases were found comparable or lower for 6 of the textural features than the ones of SUV. They also showed good values of mean intra- and inter-patient variability of VOIs drawn in liver tissue of patients with metastases and of results negative ones.

Conclusion Heterogeneity parameters assessed in FDG PET are promising to classify tissue and differentiate malignant lesions usable for more personalized treatment planning, therapy response evaluation and precise delineation of tumors for target volume determination as part of radiation therapy planning.

Zusammenfassung

Ziel Maligne Erkrankungen zeigen eine höhere räumliche Heterogenität als normales Gewebe. Wir untersuchten, ob Texturparameter der FDG-PET, die die Heterogenität beschreiben, als Werkzeug zur Unterscheidung zwischen Tumor- und normalem Lebergewebe dienen.

Methoden FDG-PET/CT-Scans von 80 Patienten mit Lebermetastasen und 80 Patienten mit negativen Befunden der abdominalen Organe wurden analysiert. Metastasen und normales Lebergewebe wurden analysiert, wobei bis zu 3 VOIs mit einem Durchmesser von 25 mm im gesunden Lebergewebe der vom Tumor betroffenen Leber bzw. von Lebern mit negativem Befund gelegt wurden, während bis zu 3 Metastasen pro Patient abgegrenzt wurden. Innerhalb dieser VOIs wurden 30 verschiedene Texturparameter sowie der SUV berechnet. Die Parameter wurden in Bezug auf die intra- und interindividuelle Variabilität verglichen (2-seitiger t-Test). Eine ROC-Analyse wurde durchgeführt, um die Vorhersagekraft und die Cut-off-Werte zu analysieren.

Ergebnisse 28 Texturparameter unterschieden gesundes und pathologisches Gewebe (p < 0,05) mit hoher Sensitivität und Spezifität. Der SUV zeigte die Fähigkeit zur Differenzierung, jedoch mit einer geringeren Signifikanz. 15 Texturparameter sowie der SUV zeigten eine signifikante Variation zwischen gesundem Gewebe aus tumorbefallener und negativer Leber. Die mittlere intra- und interindividuelle Variabilität der Metastasen war bei 6 der Texturmerkmale vergleichbar bzw. niedriger als beim SUV. Sie zeigten auch gute Werte für die mittlere intra- und interindividuelle Variabilität der VOIs, die im Lebergewebe von Patienten mit Metastasen und mit negativen Befunden gelegt wurden.

Schlussfolgerung Die in der FDG-PET bewerteten Heterogenitätsparameter sind vielversprechend, um Gewebe zu klassifizieren und maligne Läsionen zu differenzieren, die für eine stärker personalisierte Behandlungsplanung, eine Beurteilung des Therapieansprechens und eine präzise Abgrenzung von Tumoren zur Bestimmung des Zielvolumens im Rahmen der Strahlentherapieplanung geeignet sind.



Publikationsverlauf

Eingereicht: 17. Juli 2020

Angenommen: 23. September 2020

Artikel online veröffentlicht:
03. November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Arteaga CL, Baselga J. Tyrosine kinase inhibitors: why does the current process of clinical development not apply to them?. Cancer Cell 2004; 5 (06) 525-531
  • 2 Gerlinger M, Rowan AJ, Horswell S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366 (10) 883-892
  • 3 Yang Z, Tang LH, Klimstra DS. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol 2011; 35 (06) 853-860
  • 4 Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 2010; 1805 (01) 105-117
  • 5 Blagosklonny MV. Oncogenic resistance to growth-limiting conditions. Nature Reviews 2002; 2: 221-224
  • 6 Laconi E, Doratiotto S, Vineis P. The microenvironments of multistage carcinogenesis. Semin Cancer Biol 2008; 18 (05) 322-329
  • 7 Thilly WG. Have environmental mutagens caused oncomutations in people?. Nat Genet 2003; 34 (03) 255-259
  • 8 Marusyk A, Casás-Selves M, Henry CJ. et al. Irradiation alters selection for oncogenic mutations in hematopoietic progenitors. Cancer Res 2009; 69 (18) 7262-7269
  • 9 Ganeshan B, Panayiotou E, Burnand K. et al. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol 2012; 22 (04) 796-802
  • 10 Goh V, Ganeshan B, Nathan P. et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 2011; 261 (01) 165-171
  • 11 O'Connor JP, Rose CJ, Jackson A. et al. DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer 2011; 105 (01) 139-145
  • 12 Lopes R, Ayache A, Makni N. et al. Prostate cancer characterization on MR images using fractal features. Med Phys 2011; 38 (01) 83-95
  • 13 Chicklore S, Goh V, Siddique M. et al. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 2013; 40 (01) 133-140
  • 14 Davnall F, Yip CSP, Ljungqvist G. et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?. Insights Imaging 2012; 3 (06) 573-589
  • 15 Martínez MJ, Bercier Y, Schwaiger M. et al. PET/CT Biograph Sensation 16. Performance improvement using faster electronics. Nuklearmedizin 2006; 45 (03) 126-133
  • 16 Jakoby BW, Bercier Y, Conti M. et al. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol 2011; 56 (08) 2375-2389
  • 17 Bundschuh RA, Dinges J, Neumann L. et al. Textural Parameters of Tumor Heterogeneity in ¹⁸F-FDG PET/CT for Therapy Response Assessment and Prognosis in Patients With Locally Advanced Rectal Cancer. J Nucl Med 2014; 55 (06) 891-897
  • 18 Werner RA, Lapa C, Ilhan H. et al. Survival prediction in patients undergoing radionuclide therapy based on intratumoral somatostatin-receptor heterogeneity. Oncotarget 2017; 8 (04) 7039-7049
  • 19 Pyka T, Bundschuh RA, Andratschke N. et al. Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat Oncol 2015; 10: 100
  • 20 Dittrich D, Pyka T, Scheidhauer K. et al. Textural features in FDG-PET/CT can predict outcome in melanoma patients to treatment with Vemurafenib and Ipililumab. Nuklearmedizin 2020; 59 (03) 228-234
  • 21 Khurshid Z, Ahmadzadehfar H, Gaertner FC. et al. Role of textural heterogeneity parameters in patient selection for 177Lu-PSMA therapy via response prediction. Oncotarget 2018; 9 (70) 33312-33321
  • 22 Eary JF, Brenner W. Do we need Quantitative Imaging?. Nuklearmedizin 2020; 59 (03) 225-226
  • 23 Herold G. Gastroenterologie. In: Herold G. Hrsg. Innere Medizin. Köln: 2014: 488-493
  • 24 ©Leitlinienprogramm Onkologie. S3-Leitlinie Kolorektales Karzinom Version 1.1. AWMF -Registernummer: 021/007OL 2014 Aug; 163.
  • 25 Castellano G, Bonilha L, Li LM. et al. Texture analysis of medical images. Clin Radiol 2004; 59 (12) 1061-1069
  • 26 Youden WJ. Index for rating diagnostic tests. Cancer 1950; 3: 32-35
  • 27 Delbeke D, Coleman RE, Guiberteau MJ. et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006; 47: 885-895
  • 28 Krause BJ, Beyer T, Bockisch A. et al. FDGPET/CT in der Onkologie. Nuklearmedizin 2007; 46: 291-301
  • 29 Kinahan PE, Fletcher JW. PET/CT Standardized Uptake Values (SUVs) in Clinical Practice and Assessing Response to Therapy. Semin Ultrasound CT MR 2010; 31 (06) 496-505
  • 30 Shreve PD, Anzai Y, Wahl RL. Pitfalls in Oncologic Diagnosis with FDG PET Imaging: Physiologic and Benign Variants. RadioGraphics 1999; 19: 61-77
  • 31 Liu G, Hu Y, Zhao Y. et al. Variations of the liver standardized uptake value in relation to background blood metabolism. Medicine (Baltimore) 2018; 97 (19) e0699
  • 32 Zincirkeser S, Sahin E, Halac M. et al. Standardized uptake values of normal organs on 18F-fluorodeoxyglucose positron emission tomography and computed tomography imaging. J Int Med Res 2007; 35 (02) 231-236
  • 33 Vitola JV, Delbeke D, Sandler MP. et al. Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Am J Surg 1996; 171 (01) 21-26
  • 34 Delbeke D, Martin WH, Sandler MP. et al. Evaluation of Benign vs Malignant Hepatic Lesions With Positron Emission Tomography. Arch Surg 1998; 133 (05) 510-516
  • 35 Azmi NHM, Suppiah S, Liong CW. et al Reliability of standardized uptake value normalized to lean body mass using the liver as a reference organ, in contrast-enhanced 18F-FDG PET/CT imaging. Radiation Physics and Chemistry, Elsevier Ltd 2018 June; 147: 35–39
  • 36 Mayerhoefer ME, Schima W, Trattnig S. et al. Texture-based classification of focal liver lesions on MRI at 3.0 Tesla: a feasibility study in cysts and hemangiomas. J Magn Reson Imaging 2010; 32 (02) 352-359
  • 37 Eliat PE, Olivié D, Saïkali S. et al Can Dynamic Contrast-Enhanced Magnetic Resonance Imaging Combined with Texture Analysis Differentiate Malignant Glioneuronal Tumors from Other Glioblastoma?. Neurol Res Int 2012; 2012: 195176 . doi:10.1155/2012/195176
  • 38 Forgacs A, Jonsson HP, Dahlbom M. et al. A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images. PLoS One 2016; 11 (10) e0164113
  • 39 Orlhac F, Soussan M, Maisonobe JA. et al. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 2014; 55 (03) 414-422
  • 40 Brooks FJ, Grigsby PW. Current measures of metabolic heterogeneity within cervical cancer do not predict disease outcome. Radiat Oncol 2011; 6: 69
  • 41 Fong Y, Saldinger PF, Akhurst T. et al. Utility of 18F-FDG positron emission tomography scanning on selection of patients for resection of hepatic colorectal metastases. Am J Surg 1999; 178 (04) 282-287
  • 42 Tixier F, Hatt M, Le CC. et al. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med 2012; 53 (05) 693-700
  • 43 Galavis PE, Hollensen C, Jallow N. et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 2010; 49 (07) 1012-1016
  • 44 Veenland JF, Grashuis JL, Gelsema ES. Texture analysis in radiographs: the influence of modulation transfer function and noise on the discriminative ability of texture features. Med Phys 1998; 25 (06) 922-936