Nervenheilkunde 2022; 41(09): 601-608
DOI: 10.1055/a-1860-3282
Schwerpunkt

Die Bedeutung des Darm-Mikrobioms für die Alzheimer-Demenz

The importance of the gut microbiome for Alzheimer’s dementia
Georg Adler
1  
› Institutsangaben

ZUSAMMENFASSUNG

Hintergrund Unter dem Darm-Mikrobiom versteht man die Summe der Genome der Mikrobiota des menschlichen Darms. Die Bedeutung des Darm-Mikrobiota für Entwicklung, Verlauf und Behandlung der Alzheimer-Demenz hat in den vergangenen Jahren zunehmendes Interesse gefunden, sodass mittlerweile zahlreiche Untersuchungen zu diesem Thema publiziert wurden.

Ziel Darstellung des aktuellen Stands der Forschung zur Bedeutung des Darm-Mikrobioms für Entwicklung, Verlauf und Behandlung der Alzheimer-Demenz.

Ergebnisse und Diskussion Bei Patienten mit Alzheimer-Demenz wurden Veränderungen des Mikrobioms beschrieben, insbesondere eine Abnahme der Diversität sowie eine Zunahme bzw. Abnahme bestimmter Stämme und Klassen von Bakterien. Ähnliche Veränderungen fanden sich bei Diabetes mellitus und Übergewicht, bekannten Risikofaktoren für die Alzheimer-Demenz, sowie mit zunehmendem Lebensalter. Schließlich sind auch entzündliche Darmerkrankungen mit einem erhöhten Risiko für die Entwicklung einer Alzheimer-Demenz verbunden. Es gibt verschiedene Mechanismen, über die das Darm-Mikrobiom die Krankheitsprozesse, die der Alzheimer-Demenz zugrunde liegen, beeinflussen kann. Am besten belegt erscheint die Verstärkung von Entzündungsprozessen durch eine vermehrte Durchlässigkeit der Darmbarriere für entzündungsfördernde Bakterienmetabolite und -bestandteile. Diese Zusammenhänge haben schon Therapieversuche ausgelöst, die insbesondere mit Pro- und Präbiotika auf eine Modifikation des Darm-Mikrobioms abzielen.

ABSTRACT

Background The gut microbiome is the sum of the genomes of the microbiota of the human gut. The impact of the intestinal microbiota on the development, course and treatment of Alzheimer‘s dementia has attracted increasing interest in recent years, so that meanwhile numerous studies on this topic have been published.

Objective To outline the actual state of research on the impact of the gut microbiome for the development, course, and treatment of Alzheimer’s dementia.

Results and Discussion Changes of the gut microbiome have been described in patients with Alzheimer‘s dementia, in particular a reduction of diversity and an increase or decrease in certain phyla and genera of bacteria. Similar changes were found in diabetes mellitus and obesity, known risk factors for Alzheimer‘s dementia, and with increasing age. Furthermore, inflammatory bowel disease is associated with an increased risk of developing Alzheimer‘s dementia. There are various mechanisms through which the gut microbiome can influence the disease processes underlying Alzheimer‘s dementia. The intensification of inflammatory processes through increased permeability of the intestinal barrier for pro-inflammatory bacterial metabolites and components appears to be best documented. These connections have already stimulated various attempts for therapy, which aim to modify the intestinal microbiome in particular with probiotics and prebiotics.



Publikationsverlauf

Artikel online veröffentlicht:
12. September 2022

© 2022. Thieme. All rights reserved.

© Georg Thieme Verlag KG Stuttgart · New York
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Powell N, Walker MM, Talley NJ. The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat Rev Gastroenterol Hepatol 2017; 14: 143-159
  • 2 Barrett E, Ross R, O’Toole P. et al γ-Aminobutyric acid production by culturable bacteria from the human intestine. Journal of Applied Microbiology 2012; 113: 411-417
  • 3 Maqsood R, Stone TW. The Gut-Brain Axis, BDNF, NMDA and CNS Disorders. Neurochem Res 2016; 41: 2819-2835
  • 4 Benakis C, Martin-Gallausiaux C, Trezzi J-P. et al The microbiome-gut-brain axis in acute and chronic brain diseases. Curr Opin Neurobiol 2020; 61: 1-9
  • 5 Eckburg PB, Bik EM, Bernstein CN. et al Diversity of the human intestinal microbial flora. Science 2005: 308 DOI: 10.1126/science.1110591
  • 6 Turnbaugh PJ, Ley RE, Hamady M. et al The Human Microbiome Project. Nature 2007; 449: 804-810
  • 7 Koenig JE, Spor A, Scalfone N. et al Succession of microbial consortia in the developing infant gut microbiome. PNAS 2011; 108: 4578-4585 DOI: 10.1073/pnas.1000081107.
  • 8 Faith JJ, Guruge JL, Charbonneau M. et al The long-term stability of the human gut microbiota. Science. 2013: 341 DOI: 10.1126/science.1237439
  • 9 Claesson MJ, Cusack S, O’Sullivan O. et al Composition, variability, and temporal stability of the intestinal microbiota of the elderly. PNAS 2011; 108: 4586-4591
  • 10 Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National Academy of Sciences of the United States of America. 2011: 108 Suppl 1 DOI: 10.1073/pnas.1000087107
  • 11 Turnbaugh PJ, Ridaura VK, Faith JJ. et al The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Sci Transl Med 2009; 01: 6ra14
  • 12 Clemente JC, Ursell LK, Parfrey LW. et al The impact of the gut microbiota on human health: an integrative view. Cell 2012: 148 DOI: 10.1016/j.cell.2012.01.035
  • 13 Wang T, Hu X, Liang S. et al Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Beneficial microbes. 2015: 6 DOI: 10.3920/BM2014.0177
  • 14 Liang S, Wang T, Hu X. et al Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015: 310 DOI: 10.1016/j.neuroscience.2015.09.033
  • 15 Dubois B, Hampel H, Feldman HH. et al Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement 2016; 12: 292-323
  • 16 Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256: 184-185
  • 17 Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 2009; 110: 1129-1134
  • 18 Gosztyla ML, Brothers HM, Robinson SR. Alzheimer’s Amyloid-β is an Antimicrobial Peptide: A Review of the Evidence. J Alzheimers Dis 2018; 62: 1495-1506
  • 19 Fulop T, Witkowski JM, Bourgade K. et al Can an Infection Hypothesis Explain the Beta Amyloid Hypothesis of Alzheimer’s Disease?. Frontiers in aging neuroscience 2018; 10: 224 DOI: 10.3389/fnagi.2018.00224.
  • 20 Abbott A. Are infections seeding some cases of Alzheimer’s disease?. Nature 2020; 587: 22-25 DOI: 10.1038/d41586-020-03084-9.
  • 21 Singhrao SK, Harding A, Poole S. et al Porphyromonas gingivalis Periodontal Infection and Its Putative Links with Alzheimer’s Disease. Mediators Inflamm 2015; 2015: 137357
  • 22 Poole S, Singhrao SK, Kesavalu L. et al Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimers Dis 2013; 36: 665-677 DOI: 10.3233/JAD-121918.
  • 23 Zhan X, Stamova B, Jin L-W. et al Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 2016; 87: 2324-2332 DOI: 10.1212/WNL.0000000000003391.
  • 24 Heneka MT, Carson MJ, El KJ. et al Neuroinflammation in Alzheimer’s disease. The Lancet. Neurology 2015: 14 DOI: 10.1016/S1474-4422(15)70016-5
  • 25 Kinney JW, Bemiller SM, Murtishaw AS. et al Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 04: 575-590 DOI: 10.1016/j.trci.2018.06.014.
  • 26 Montagne A, Barnes SR, Sweeney MD. et al Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015; 85: 296-302 DOI: 10.1016/j.neuron.2014.12.032.
  • 27 Jimenez A, Pegueroles J, Carmona-Iragui M. et al Weight loss in the healthy elderly might be a non-cognitive sign of preclinical Alzheimer’s disease. Oncotarget 2017; 08: 104706-104716 DOI: 10.18632/oncotarget.22218.
  • 28 Kröger E, Mouls M, Wilchesky M. et al Adverse Drug Reactions Reported With Cholinesterase Inhibitors: An Analysis of 16 Years of Individual Case Safety Reports From VigiBase. Ann Pharmacother 2015; 49: 1197-1206
  • 29 Cattaneo A, Cattane N, Galluzzi S. et al Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. 2017; 49: 60-68
  • 30 Vogt NM, Kerby RL, Dill-McFarland KA. et al Gut microbiome alterations in Alzheimer’s disease. Scientific reports 2017: 7 DOI: 10.1038/s41598-017-13601-y
  • 31 Wang X, Sun G, Feng T. et al Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 2019; 29: 787-803
  • 32 Minter Hinterleitner R, Meisel M. et al Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APP SWE/PS1 ΔE9 murine model of Alzheimer’s disease. Scientific reports. 2017: 7 DOI: 10.1038/s41598-017-11047-w
  • 33 Larsen N, Vogensen FK, van den Berg FWJ. et al Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 05: e9085
  • 34 Schwiertz A, Taras D, Schäfer K. et al Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010; 18: 190-195 DOI: 10.1038/oby.2009.167.
  • 35 Turnbaugh PJ, Ley RE, Mahowald MA. et al An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006: 444 DOI: 10.1038/nature05414
  • 36 Qin J, Li Y, Cai Z. et al A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60 DOI: 10.1038/nature11450.
  • 37 Hopkins MJ, Sharp R, Macfarlane GT. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16 S rRNA abundance, and community cellular fatty acid profiles. Gut 2001; 48: 198-205
  • 38 Woodmansey EJ, McMurdo MET, Macfarlane GT. et al Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 2004; 70: 6113-6122
  • 39 Ouwehand AC, Tiihonen K, Saarinen M. et al Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters. Br J Nutr 2009; 101: 367-375
  • 40 Tran L, Greenwood-Van Meerveld B. Age-Associated Remodeling of the Intestinal Epithelial Barrier. J Gerontol A Biol Sci Med Sci 2013; 68: 1045-1056 DOI: 10.1093/gerona/glt106.
  • 41 Man AL, Bertelli E, Rentini S. et al Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci (Lond) 2015; 129: 515-527
  • 42 Zhang B, Wang HE, Bai Y-M. et al Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut 2021; 70: 85-91
  • 43 Zingel R, Bohlken J, Kostev K. Association Between Inflammatory Bowel Disease and Dementia: A Retrospective Cohort Study. J Alzheimers Dis 2021; 80: 1471-1478
  • 44 Huang W-S, Tseng C-H, Chen P-C. et al Inflammatory bowel diseases increase future ischemic stroke risk: a Taiwanese population-based retrospective cohort study. Eur J Intern Med 2014; 25: 561-565 DOI: 10.1016/j.ejim.2014.05.009.
  • 45 Walker KA, Hoogeveen RC, Folsom AR. et al Midlife systemic inflammatory markers are associated with late-life brain volume: The ARIC study. Neurology 2017; 89: 2262-2270
  • 46 Dinan TG, Cryan JF. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol Clin North Am 2017; 46: 77-89
  • 47 Undseth R, Jakobsdottir G, Nyman M. et al Low serum levels of short-chain fatty acids after lactulose ingestion may indicate impaired colonic fermentation in patients with irritable bowel syndrome. Clin Exp Gastroenterol 2015; 08: 303-308
  • 48 Ho L, Ono K, Tsuji M. et al Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 2018; 18: 83-90
  • 49 Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain research 2018: 1693 DOI: 10.1016/j.brainres.2018.03.015
  • 50 Verbeke KA, Boobis AR, Chiodini A. et al Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev 2015; 28: 42-66
  • 51 Guandalini S, Sansotta N. Probiotics in the Treatment of Inflammatory Bowel Disease. Adv Exp Med Biol 2019; 1125: 101-107 DOI: 10.1007/5584_2018_319.
  • 52 Leblhuber F, Steiner K, Schuetz B. et al Probiotic Supplementation in Patients with Alzheimer’s Dementia – An Explorative Intervention Study. Curr Alzheimer Res 2018; 15: 1106-1113 DOI: 10.2174/1389200219666180813144834.
  • 53 Akbari E, Asemi Z, Daneshvar Kakhaki R. et al Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Front. Aging Neurosci 2016: 8 DOI: 10.3389/fnagi.2016.00256
  • 54 Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N. et al Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin Nutr 2019; 38: 2569-2575 DOI: 10.1016/j.clnu.2018.11.034.
  • 55 Agahi A, Hamidi GA, Daneshvar R. et al Does Severity of Alzheimer’s Disease Contribute to Its Responsiveness to Modifying Gut Microbiota? A Double Blind Clinical Trial. Front Neurol 2018; 09: 662 DOI: 10.3389/fneur.2018.00662.
  • 56 Gibson GR, Hutkins R, Sanders ME. et al Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14: 491-502 DOI: 10.1038/nrgastro.2017.75.
  • 57 Míguez B, Gómez B, Parajó JC. et al Potential of Fructooligosaccharides and Xylooligosaccharides as Substrates To Counteract the Undesirable Effects of Several Antibiotics on Elder Fecal Microbiota: A First in Vitro Approach. J Agric Food Chem 2018; 66: 9426-9437 DOI: 10.1021/acs.jafc.8b02940.
  • 58 Wang T, Kuang W, Chen W. et al A phase II randomized trial of sodium oligomannate in Alzheimer’s dementia. Alzheimers Res Ther 2020; 12: 110
  • 59 Soldavini J, Kaunitz JD. Pathobiology and potential therapeutic value of intestinal short-chain fatty acids in gut inflammation and obesity. Dig Dis Sci 2013; 58: 2756-2766
  • 60 Nankova BB, Agarwal R, MacFabe DF. et al Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One 2014; 09: e103740
  • 61 Govindarajan N, Agis-Balboa RC, Walter J. et al Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis 2011; 26: 187-197
  • 62 Berti V, Walters M, Sterling J. et al Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology 2018; 90: e1789-e1798
  • 63 Del Chierico F, Vernocchi P, Dallapiccola B. et al Mediterranean diet and health: food effects on gut microbiota and disease control. International journal of molecular sciences 2014; 15: 11678-11699
  • 64 Ghosh SS, Wang J, Yannie PJ. et al Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc 2020; 04: bvz039