Subscribe to RSS
DOI: 10.1055/a-1900-0293
Synthesis of Sulfonylated Cinchona Alkaloids via Zinc-Mediated Sulfonylation of the N-Oxides of the Quinoline Groups
Financial support from the National Natural Science Foundation of China (21772191 and 22071235) is gratefully acknowledged.
Abstract
A general and practical method for the synthesis of sulfonylated cinchona alkaloids is presented. The reactions are carried out via Zn-mediated nucleophilic aromatic substitution of the N-oxides of the quinoline core in cinchona alkaloids with a range of sulfonyl chlorides. By careful optimization of the reaction parameters and the procedure, both aromatic and aliphatic sulfonyl chlorides react efficiently with the N-oxides to afford the corresponding sulfonylated products in high yields. In addition, the reaction can be reliably scaled up to gram level. As a result, this method provides a practical route for the synthesis of new cinchona alkaloid derivatives that might be potentially useful compounds, particularly in asymmetric catalysis.
Key words
cinchona alkaloids - quinoline N-oxides - quinolines - sulfonylation - nucleophilic aromatic substitutionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1900-0293.
- Supporting Information
Publication History
Received: 23 June 2022
Accepted after revision: 14 July 2022
Accepted Manuscript online:
14 July 2022
Article published online:
16 August 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Li H, Chen Y, Deng L. In Privileged Chiral Ligands and Catalysts. Zhou Q.-L. Wiley-VCH; Weinheim: 2011: 361
- 2a Tan D.-X, Zhou J, Liu C.-Y, Han FS. Angew. Chem. Int. Ed. 2020; 59: 3834
- 2b Zhou J, Tan D.-X, Han FS. Angew. Chem. Int. Ed. 2020; 59: 18731
- 2c Tan D.-X, Zhou J, Han FS. Tetrahedron 2020; 76: 131641
- 3a Maloney KM, Kuethe JT, Linn K. Org. Lett. 2011; 13: 102
- 3b Bao P, Wang L, Liu Q, Yang D, Wang H, Zhao X, Yue H, Wei W. Tetrahedron Lett. 2019; 60: 214
- 3c Xie L.-Y, Peng S, Tan J.-X, Sun R.-X, Yu X, Dai N.-N, Tang Z.-L, Xu X, He W.-M. ACS Sustainable Chem. Eng. 2018; 6: 16976
- 3d Liu X.-W, Wang J.-Q, Ma H, Zhu Q, Xie L.-Y. Green Chem. 2021; 23: 7589
- 4 Trankle WG, Kopach ME. Org. Process Res. Dev. 2007; 11: 913
- 5a Wang D, Désaubry L, Li G, Huang M, Zhang S. Adv. Synth. Catal. 2021; 363: 2
- 5b Kaur R, Mandal S, Banerjee D, Yadav AK. ChemistrySelect 2021; 6: 2832
- 5c Dong D, Sun Y, Li G, Yang H, Wang Z, Xu X. Chin. J. Org. Chem. 2020; 40: 4071
- 6a Wu Z, Song H, Cui X, Pi C, Du W, Wu Y. Org. Lett. 2013; 15: 1270
- 6b Du B, Qian P, Wang Y, Mei H, Han J, Pan Y. Org. Lett. 2016; 18: 4144
- 6c Li G.-H, Dong D.-Q, Deng Q, Yan S.-Q, Wang Z.-L. Synthesis 2019; 51: 3313
- 7a Li P, Jiang Y, Li H, Dong W, Peng Z, An D. Synth. Commun. 2018; 48: 1909
- 7b Mai W, Lv M, Zhang X, Lu K. J. Chem. Res. 2017; 41: 705
- 8a Sumunnee L, Buathongjan C, Pimpasri C, Yotphan S. Eur. J. Org. Chem. 2017; 1025
- 8b Wang R, Zeng Z, Chen C, Yi N, Jiang J, Cao Z, Deng W, Xiang J. Org. Biomol. Chem. 2016; 14: 5317
- 8c Su Y, Zhou X, He C, Zhang W, Ling X, Xiao X. J. Org. Chem. 2016; 81: 4981
- 9 Xie L.-Y, Li Y.-J, Qu J, Duan Y, Hu J, Liu k.-J, Cao Z, He W.-M. Green Chem. 2017; 19: 5642
- 10 Sun K, Chen X.-L, Li X, Qu L.-B, Bi W.-Z, Chen X, Ma H.-L, Zhang S.-T, Han B.-W, Zhao Y.-F, Li C.-J. Chem. Commun. 2015; 51: 12111
- 11 You G, Xi D, Sun J, Hao L, Xia C. Org. Biomol. Chem. 2019; 17: 9479
- 12 Peng S, Song Y.-X, He J.-Y, Tang S.-S, Tan J.-X, Cao Z, Lin Y.-W, He W.-M. Chin. Chem. Lett. 2019; 30: 2287
- 13 Jiang M, Yuan Y, Wang T, Xiong Y, Li J, Guo H, Lei A. Chem. Commun. 2019; 55: 13852
For selected recent reviews, see: