Thromb Haemost 2023; 123(02): 177-185
DOI: 10.1055/a-1951-1777
Review Article

Factor XII Explored with AlphaFold - Opportunities for Selective Drug Development

Rowan Frunt
1   CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
,
Hinde El Otmani
1   CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
,
Bubacarr Gibril Kaira
1   CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
,
Steven de Maat
1   CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
,
Coen Maas
1   CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
› Author Affiliations
Funding This study was supported by Trombosestichting Nederland (2020_1).

Abstract

Medical device associated thrombosis is an important clinical problem. This type of thrombosis can result from Factor XII (FXII) binding to non-natural surface materials and subsequent activation of the contact pathway. This drives the development of new therapeutic strategies to block this pathway and information on the structural properties of FXII should catalyse this quest. Presently, there is no publicly available crystal structure of full-length FXII. However, the AlphaFold Protein Structure Database provides a model structure. We here explore this model in combination with previous structure-function studies to identify opportunities for selective pharmacological blockade of the contribution of FXII in medical device associated thrombosis. Previous studies demonstrated that FXII activation is dependent on molecular cleavage after R353. We subsequently proposed that protein conformation protects this cleavage site to ensure zymogen quiescence and prevent inappropriate FXII activation. The AlphaFold model shows that a small loop containing R353 indeed is buried in the globular molecule. This is the result of intra-molecular interactions between the (N-terminal) Fibronectin type II domain, (central) kringle and (C-terminal) protease domain, in a structure that resembles a three-point harness. Furthermore, this interaction pushes the intermediate domains, as well as the flexible proline-rich region (PRR), outward while encapsulating R353 in the molecule. The outward directed positively charged patches are likely to be involved in binding to anionic surfaces. The binding of FXII to surfaces (and several monoclonal antibodies) acccelerates its activation by inducing conformational changes. For prevention of medical device associated thrombosis, it is therefore important to target the surface binding sites of FXII without causing structural changes.



Publication History

Received: 13 June 2022

Accepted: 27 September 2022

Accepted Manuscript online:
27 September 2022

Article published online:
15 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Jaffer IH, Weitz JI. The blood compatibility challenge. Part 1: blood-contacting medical devices: the scope of the problem. Acta Biomater 2019; 94: 2-10
  • 2 Shamanaev A, Emsley J, Gailani D. Proteolytic activity of contact factor zymogens. J Thromb Haemost 2021; 19 (02) 330-341
  • 3 de Maat S, Tersteeg C, Herczenik E, Maas C. Tracking down contact activation - from coagulation in vitro to inflammation in vivo. Int J Lab Hematol 2014; 36 (03) 374-381
  • 4 Buchtele N, Schwameis M, Schellongowski P. et al. Prevalence and clinical impact of reduced coagulation factor XII activity in patients receiving extracorporeal membrane oxygenation. Crit Care Med 2021; 49 (12) e1206-e1211
  • 5 Larsson M, Rayzman V, Nolte MW. et al. A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med 2014; 6 (222): 222ra17
  • 6 De Maat S, Hofman ZLM, Maas C. Hereditary angioedema: the plasma contact system out of control. J Thromb Haemost 2018; 16 (09) 1674-1685
  • 7 Zilberman-Rudenko J, Reitsma SE, Puy C. et al. Factor XII activation promotes platelet consumption in the presence of bacterial-type long-chain polyphosphate in vitro and in vivo. Arterioscler Thromb Vasc Biol 2018; 38 (08) 1748-1760
  • 8 Nickel KF, Ronquist G, Langer F. et al. The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood 2015; 126 (11) 1379-1389
  • 9 Müller F, Mutch NJ, Schenk WA. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (06) 1143-1156
  • 10 Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood 2018; 131 (17) 1903-1909
  • 11 Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH. Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci U S A 2006; 103 (04) 903-908
  • 12 Donovan AJ, Kalkowski J, Szymusiak M. et al. Artificial dense granules: a procoagulant liposomal formulation modeled after platelet polyphosphate storage pools. Biomacromolecules 2016; 17 (08) 2572-2581
  • 13 Yeon JH, Mazinani N, Schlappi TS. et al. Localization of short-chain polyphosphate enhances its ability to clot flowing blood plasma. Sci Rep 2017; 7: 42119
  • 14 Szymusiak M, Donovan AJ, Smith SA. et al. Colloidal confinement of polyphosphate on gold nanoparticles robustly activates the contact pathway of blood coagulation. Bioconjug Chem 2016; 27 (01) 102-109
  • 15 Verhoef JJF, Barendrecht AD, Nickel KF. et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood 2017; 129 (12) 1707-1717
  • 16 Travers RJ, Shenoi RA, Kalathottukaren MT, Kizhakkedathu JN, Morrissey JH. Nontoxic polyphosphate inhibitors reduce thrombosis while sparing hemostasis. Blood 2014; 124 (22) 3183-3190
  • 17 Labberton L, Kenne E, Long AT. et al. Neutralizing blood-borne polyphosphate in vivo provides safe thromboprotection. Nat Commun 2016; 7: 12616
  • 18 Iwaki T, Castellino FJ. Plasma levels of bradykinin are suppressed in factor XII-deficient mice. Thromb Haemost 2006; 95 (06) 1003-1010
  • 19 Maas C. Plasminflammation-an emerging pathway to bradykinin production. Front Immunol 2019; 10 (AUG): 2046
  • 20 Scheffel J, Mahnke NA, Hofman ZLM. et al. Cold-induced urticarial autoinflammatory syndrome related to factor XII activation. Nat Commun 2020; 11 (01) 179
  • 21 Sala-Cunill A, Björkqvist J, Senter R. et al. Plasma contact system activation drives anaphylaxis in severe mast cell-mediated allergic reactions. J Allergy Clin Immunol 2015; 135 (04) 1031-1043.e6
  • 22 de Maat S, Sanrattana W, Mailer RK. et al. Design and characterization of α1-antitrypsin variants for treatment of contact system-driven thromboinflammation. Blood 2019; 134 (19) 1658-1669
  • 23 Iwaki T, Cruz-Topete D, Castellino FJ. A complete factor XII deficiency does not affect coagulopathy, inflammatory responses, and lethality, but attenuates early hypotension in endotoxemic mice. J Thromb Haemost 2008; 6 (11) 1993-1995
  • 24 Kalinin DV. Factor XII(a) inhibitors: a review of the patent literature. Expert Opin Ther Pat 2021; 31 (12) 1155-1176
  • 25 Fredenburgh JC, Weitz JI. New anticoagulants: moving beyond the direct oral anticoagulants. J Thromb Haemost 2021; 19 (01) 20-29
  • 26 Li F, Yang X, Liu J. et al. Antithrombotic effect of shRNA target F12 mediated by adeno-associated virus. Mol Ther Nucleic Acids 2019; 16: 295-301
  • 27 Lorentz CU, Tucker EI, Verbout NG. et al. The contact activation inhibitor AB023 in heparin-free hemodialysis: results of a randomized phase 2 clinical trial. Blood 2021; 138 (22) 2173-2184
  • 28 Cheng Q, Tucker EI, Pine MS. et al. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood 2010; 116 (19) 3981-3989
  • 29 Renné T, Schmaier AH, Nickel KF, Blombäck M, Maas C. In vivo roles of factor XII. Blood 2012; 120 (22) 4296-4303
  • 30 Matafonov A, Leung PY, Gailani AE. et al. Factor XII inhibition reduces thrombus formation in a primate thrombosis model. Blood 2014; 123 (11) 1739-1746
  • 31 Maas C, Schiks B, Strangi RD. et al. Identification of fibronectin type I domains as amyloid-binding modules on tissue-type plasminogen activator and three homologs. Amyloid 2008; 15 (03) 166-180
  • 32 UniProt Consortium. F12 - Coagulation factor XII precursor - Homo sapiens (Human) - F12 gene & protein. Published 2022. Accessed June 9, 2022 at: https://www.uniprot.org/uniprot/P00748
  • 33 Bateman A, Martin MJ, Orchard S. et al; UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49 (D 1) D480-D489
  • 34 Revak SD, Cochrane CG, Bouma BN, Griffin JH. Surface and fluid phase activities of two forms of activated Hageman factor produced during contact activation of plasma. J Exp Med 1978; 147 (03) 719-729
  • 35 Beringer DX, Kroon-Batenburg LMJ. The structure of the FnI-EGF-like tandem domain of coagulation factor XII solved using SIRAS. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69 (Pt 2): 94-102
  • 36 Pathak M, Wilmann P, Awford J. et al. Coagulation factor XII protease domain crystal structure. J Thromb Haemost 2015; 13 (04) 580-591
  • 37 Dementiev A, Silva A, Yee C. et al. Structures of human plasma β-factor XIIa cocrystallized with potent inhibitors. Blood Adv 2018; 2 (05) 549-558
  • 38 Pathak M, Manna R, Li C. et al. Crystal structures of the recombinant β-factor XIIa protease with bound Thr-Arg and Pro-Arg substrate mimetics. Acta Crystallogr D Struct Biol 2019; 75 (Pt 6): 578-591
  • 39 Kaira BG, Slater A, McCrae KR. et al. Factor XII and kininogen asymmetric assembly with gC1qR/C1QBP/P32 is governed by allostery. Blood 2020; 136 (14) 1685-1697
  • 40 Varadi M, Anyango S, Deshpande M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022; 50 (D1): D439-D444
  • 41 Jumper J, Evans R, Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596 (7873): 583-589
  • 42 Beckwith W. Science's 2021 Breakthrough: AI-powered Protein Prediction. American Association for the Advancement of Science. Published 2021. Accessed June 9, 2022 at: https://www.aaas.org/news/sciences-2021-breakthrough-ai-powered-protein-prediction
  • 43 DeepMind Technologies Limited. EMBL-EBI. Coagulation factor XII - P00748 (FA12_HUMAN). AlphaFold Protein Strucutre Database. Published 2021. Accessed June 9, 2022 at: https://alphafold.ebi.ac.uk/entry/P00748
  • 44 Kufareva I, Abagyan R. Methods of protein structure comparison. Methods Mol Biol 2012; 857: 231-257
  • 45 Kılınç E, Can Timucin A, Selim Cinaroglu S, Timucin E. Modeling and dynamical analysis of the full-length structure of factor XII with zinc. J Mol Model 2022; 28 (05) 129
  • 46 DeepMind Technologies Limited. EMBL-EBI. Hepatocyte growth factor activator - Z04756 (HGFA_HUMAN). AlphaFold Protein Strucutre Database. Published 2021. Accessed October 14, 2022 at: https://alphafold.ebi.ac.uk/entry/Q04756
  • 47 Clark CC, Hofman ZLM, Sanrattana W, den Braven L, de Maat S, Maas C. The fibronectin type II domain of factor XII ensures zymogen quiescence. Thromb Haemost 2020; 120 (03) 400-411
  • 48 Hofman ZLM, Clark CC, Sanrattana W. et al. A mutation in the kringle domain of human factor XII that causes autoinflammation, disturbs zymogen quiescence, and accelerates activation. J Biol Chem 2020; 295 (02) 363-374
  • 49 Mahdi F, Madar ZS, Figueroa CD, Schmaier AH. Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood 2002; 99 (10) 3585-3596
  • 50 Samuel M, Pixley RA, Villanueva MA, Colman RW, Villanueva GB. Human factor XII (Hageman factor) autoactivation by dextran sulfate. Circular dichroism, fluorescence, and ultraviolet difference spectroscopic studies. J Biol Chem 1992; 267 (27) 19691-19697
  • 51 Citarella F, te Velthuis H, Helmer-Citterich M, Hack CE. Identification of a putative binding site for negatively charged surfaces in the fibronectin type II domain of human factor XII–an immunochemical and homology modeling approach. Thromb Haemost 2000; 84 (06) 1057-1065
  • 52 Shamanaev A, Ivanov I, Sun M-F. et al. Model for surface-dependent factor XII activation: the roles of factor XII heavy chain domains. Blood Adv 2022; 6 (10) 3142-3154
  • 53 Ivanov I, Matafonov A, Sun MF. et al. A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain. Blood 2019; 133 (10) 1152-1163
  • 54 Björkqvist J, de Maat S, Lewandrowski U. et al. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Invest 2015; 125 (08) 3132-3146
  • 55 de Maat S, Björkqvist J, Suffritti C. et al. Plasmin is a natural trigger for bradykinin production in patients with hereditary angioedema with factor XII mutations. J Allergy Clin Immunol 2016; 138 (05) 1414-1423.e9
  • 56 de Maat S, Maas C. Factor XII: form determines function. J Thromb Haemost 2016; 14 (08) 1498-1506
  • 57 de Maat S, Clark CC, Boertien M. et al. Factor XII truncation accelerates activation in solution. J Thromb Haemost 2019; 17 (01) 183-194
  • 58 Davoine C, Bouckaert C, Fillet M, Pochet L. Factor XII/XIIa inhibitors: their discovery, development, and potential indications. Eur J Med Chem 2020; 208: 112753
  • 59 Pixley RA, Colman RW. A monoclonal antibody recognizing an iscosapeptide sequence in the heavy chain of human factor XII inhibits surface-catalyzed activation. Adv Exp Med Biol 1989; 247A: 473-476
  • 60 Ravon DM, Citarella F, Lubbers YT, Pascucci B, Hack CE. Monoclonal antibody F1 binds to the kringle domain of factor XII and induces enhanced susceptibility for cleavage by kallikrein. Blood 1995; 86 (11) 4134-4143
  • 61 Heestermans M, Naudin C, Mailer RK. et al. Identification of the factor XII contact activation site enables sensitive coagulation diagnostics. Nat Commun 2021; 12 (01) 5596
  • 62 Harris LJ, Larson SB, Hasel KW, McPherson A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 1997; 36 (07) 1581-1597
  • 63 Spinelli S, Tegoni M, Frenken L, van Vliet C, Cambillau C. Lateral recognition of a dye hapten by a llama VHH domain. J Mol Biol 2001; 311 (01) 123-129