Synthesis 2023; 55(19): 3145-3152
DOI: 10.1055/a-2088-8997
paper

Copper-Catalyzed Regioselective Cyanation of Indoles via C-H Bond Activation with α-Aminoacetonitriles

a   School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511436, P. R. of China
,
Ruqiya Qasim
a   School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511436, P. R. of China
,
Bing Zeng
a   School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511436, P. R. of China
,
Qing Zhang
a   School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511436, P. R. of China
,
Ehtesham Ul Haq Shah
a   School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511436, P. R. of China
,
Nasar Ud Din
a   School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511436, P. R. of China
,
Qifeng Wang
b   College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. of China
,
a   School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511436, P. R. of China
› Author Affiliations
Jinan University


Abstract

A metal-free and organic cyanating agent, 2-(diisopropylamino)acetonitrile is disclosed for the regioselective synthesis of cyanated indoles such as 2-cyanoindole and 3-cyanoindole derivatives. This method can tolerate a variety of functional groups and can furnish the corresponding cyanated products in moderate to high yields. Moreover, Cu/PhSiH3 system has been identified for the regioselective cleavage of C–H bonds of indoles by the use of metal-free CN sources via a one-pot sequential iodination/cyanation. This cost effective, homogeneous and metal-free CN source system represents the best reaction efficiency in these methodologies.

Supporting Information



Publication History

Received: 20 March 2023

Accepted after revision: 08 May 2023

Accepted Manuscript online:
08 May 2023

Article published online:
03 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gribble GW. Topics in Heterocyclic Chemistry, Vol. 26. Maes BU. W. Springer; New York: 2010
    • 1b Rodrigues de Sa Alves F, Barreiro EJ, Fraga CA. M. Mini-Rev. Med. Chem. 2009; 9: 782
    • 1c Crich D, Banerjee A. Acc. Chem. Res. 2007; 40: 151
    • 1d Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 1e Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
  • 2 Rhoennstad P, Kallin E, Apelqvist T, Wennerstaal M, Cheng A. PCT Int. Appl WO 2009127686 A1 20091022, 2009
    • 3a The Chemistry of the Cyano Group . Rappoport Z. Wiley Interscience; London: 1970
    • 3b Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Wiley-VCH; New York: 1989
    • 4a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
    • 4b Kochi JK. J. Am. Chem. Soc. 1957; 79: 2942
    • 4c Lindley J. Tetrahedron 1984; 40: 1433
    • 4d See review: Hodgson HH. Chem. Rev. 1947; 40: 251 (5)
    • 4e Rosenmund K, Struck WE. Ber. Dtsch. Chem. Ges. 1919; 52: 1749
    • 4f Koelsch CF, Whitney AG. J. Org. Chem. 1941; 6: 795
    • 4g Review: Galli C. Chem. Rev. 1988; 88: 765
    • 4h Review: Merkushev EB. Synthesis 1988; 923: 6

    • For recent examples, see:
    • 4i Zanon J, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 10
    • 5a Kleemann A, Engel J, Kutscher B, Reichert D. Pharmaceutical Substance: Synthesis, Patents, Applications, 4th ed. Thieme; Stuttgart: 2001
    • 5b Larock RC. In Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Wiley-VCH; Weinheim: 1989: 819-995
  • 6 Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 7a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1946
    • 7b Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1492
    • 7c Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 2650
    • 8a Sakamoto T, Ohsawa K. J. Chem. Soc., Perkin Trans. 1 1999; 2323
    • 8b Sakakibara Y, Okuda F, Shimobayashi A, Kirino K, Sakai M, Uchino N, Takagi K. Bull. Chem. Soc. Jap. 1988; 61: 1985
    • 8c Percec V, Bae J.-Y, Hill DH. J. Org. Chem. 1995; 60: 6895
    • 8d Anderson BA, Bell EC, Ginah FO, Harn NK, Pagh LM, Wepsiec JP. J. Org. Chem. 1998; 63: 8224
    • 8e Yang C, Williams JM. Org. Lett. 2004; 6: 2837
    • 8f Cristau HJ, Ouali A, Spindler JF, Taillefer M. Chem. Eur. J. 2005; 11: 2483
    • 8g Okano T, Iwahara M, Kiji J. Synlett 1998; 243
    • 8h Zanon J, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890
    • 8i Maligres PE, Waters MS, Fleitz F, Askin D. Tetrahedron Lett. 1999; 40: 8193
    • 8j Chidambaram R. Tetrahedron Lett. 2004; 45: 1441
    • 8k Jensen RS, Gajare AS, Toyota K, Yoshifuji M, Ozawa F. Tetrahedron Lett. 2005; 46: 8645
    • 8l Littke A, Soumeillant M, Kaltenbach RF, Cherney RJ, Tarby CM, Kiau S. Org. Lett. 2007; 9: 1711
    • 8m Martin MT, Liu B, Cooley BE, Eaddy JF. Tetrahedron Lett. 2007; 48: 2555
    • 8n Buono FG, Chidambaram R, Mueller RH, Waltermire RE. Org. Lett. 2008; 10: 5325
  • 11 Mengdi Z, Wei Z, Zengming S. J. Org. Chem. 2015; 80: 8868
    • 12a Kim J, Choi J, Shin K, Chang S. J. Am. Chem. Soc. 2012; 134: 2528
    • 12b Zhang G, Ren X, Chen J, Hu M, Cheng J. Org. Lett. 2011; 13: 5004
  • 13 Ahmad MS, Shafiq Z, Meguellati K. Synthesis 2022; 54: 3077
  • 14 Xuezhen K, Mengdi Z, Xixue Q, Yamin Z, Xiaofeng T, Zengming S. Chem. Eur. J. 2013; 19: 16880