Subscribe to RSS
DOI: 10.1055/a-2099-6478
Exploring the Power of Sulfur, Silicon, and Organocatalysis: Innovative Strategies for Asymmetric Synthesis and Advanced Synthetic Methodology
This work was financially supported by Academia Sinica and the National Science and Technology Council (Taiwan) (109-2113-M001-035-MY3).

Abstract
This research Account describes the development of chiral organocatalysts, focusing on diphenyl-2-pyrrolidinemethanol and its derivatives as valuable tools in asymmetric transformations. The research also includes the discovery of a novel anionic Si→C alkyl migration method, which has been developed into a one-pot procedure for synthesizing (E)-chalcones from hydroxyamide and N,N-diethylcarbamates. The findings underscore the potential of sulfide and silicon as valuable reagents for organic synthesis and emphasize the importance of exploring new reaction pathways and mechanisms to discover novel synthetic methods.
1 Introduction
2 Synthesis of 2 and Sulfur Reagent as Chiral Lewis Acid
3 Sulfur/Selenium Reagent as Chiral Lewis Base
4 Anionic Si→C Alkyl Migration
5 Conclusion
Key words
asymmetric catalysis - organocatalysis - oxathiaborolium - chiral sulfide - chiral selenide - alkyl migration - anionic Snieckus–Fries rearrangementPublication History
Received: 21 April 2023
Accepted after revision: 24 May 2023
Accepted Manuscript online:
24 May 2023
Article published online:
06 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Kapfhammer J, Matthes A. Hoppe-Seyler’s Z. Physiol. Chem. 1934; 223: 43
- 2a Corey E, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551
- 2b Hu Q.-Y, Zhou G, Corey E. J. Am. Chem. Soc. 2004; 126: 13708
- 3 Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA. Angew. Chem. Int. Ed. 2005; 117: 804
- 4 Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
- 5 Franzén J, Marigo M, Fielenbach D, Wabnitz TC, Kjærsgaard A, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296
- 6 Shiina I, Konishi K, Kuramoto Y.-s. Chem. Lett. 2002; 31: 164
- 7 Wu H.-Y, Chang C.-W, Chein R.-J. J. Org. Chem. 2013; 78: 5788
- 8a Imanieh H, Quayle P, Voaden M, Conway J, Street SD. A. Tetrahedron Lett. 1992; 33: 543
- 8b Macdonald JE, Poindexter GS. Tetrahedron Lett. 1987; 28: 1851
- 9 Bavikar SR, Lo H.-J, Pavan Kumar CN. S. S, Chein R.-J. Chem. Commun. 2022; 58: 8564
- 10a Lo H.-J, Lin C.-Y, Tseng M.-C, Chein R.-J. Angew. Chem. Int. Ed. 2014; 53: 9026
- 10b Lin C.-Y, Tseng M.-C, Chein R.-J. Synlett 2014; 25: 2827
- 11 Kumar SN, Bavikar SR, Pavan Kumar CN. S. S, Yu IF, Chein R.-J. Org. Lett. 2018; 20: 5362
- 12 Hayashi Y, Rohde JJ, Corey EJ. J. Am. Chem. Soc. 1996; 118: 5502
- 13a Chein R.-J, Yeung Y.-Y, Corey EJ. Org. Lett. 2009; 11: 1611
- 13b Mukherjee S, Corey EJ. Org. Lett. 2010; 12: 1024
- 14 De Vries TS, Prokofjevs A, Vedejs E. Chem. Rev. 2012; 112: 4246
- 15a Kumar SN, Yu IF, Chein R.-J. Org. Lett. 2017; 19: 22
- 15b Boobalan R, Chein R.-J. Org. Lett. 2021; 23: 6760
- 16 Mukhopadhyay S, Boobalan R, Chein R.-J. Org. Biomol. Chem. 2022; 20: 8405
- 17 Huang M.-T, Wu H.-Y, Chein R.-J. Chem. Commun. 2014; 50: 1101
- 18 Wang S.-H, Chein R.-J. Tetrahedron 2016; 72: 2607
- 19 Guo Y.-C, Chiu K.-W, Chein R.-J. J. Org. Chem. 2023; 88: 559
- 20 Cheng P.-T, Tseng Y.-H, Chein R.-J. Org. Lett. 2021; 23: 8104