Synthesis 2024; 56(01): 29-46
DOI: 10.1055/a-2134-0352
short review

Recent Progress on Copper-Catalyzed C–C Bond Formation via C(sp2)–H Insertions Using Diazo and Related Compounds

Satabdi Bera
,
Subhenira Jana
,
Rajarshi Samanta
We thank the Science and Engineering Research Board (SERB), India for financial support (CRG/2022/000398). S.B. and S.J. acknowledge the Indian Institute of Technology Kharagpur for their fellowships.


Abstract

The site-selective insertion of metal carbenes via C(sp2)–H bond functionalization is an interesting topic within the synthetic chemistry community. In recent years, studies on the formation and applications of copper carbene intermediates have increased significantly due to their cost-effectiveness and versatile reactivities. Furthermore, copper-catalyzed transformations involving C(sp2)–H insertions using diazo and related compounds, along with asymmetric versions, have emerged as new tools for C–C bond formation. This short review summarizes selected recent advances in this field.

1 Introduction

2 Insertion of Copper Carbenes into Aryl C(sp2)–H Bonds of Arenes

3 Copper Carbene Insertion into Aryl C(sp2)–H Bonds of Azaheteroarenes

4 Copper Carbene Insertion into C(sp2)–H Bonds of Alkenes

5 Conclusions and Perspectives



Publication History

Received: 31 May 2023

Accepted after revision: 20 July 2023

Accepted Manuscript online:
20 July 2023

Article published online:
08 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 2 Silberrad O, Roy CS. J. Chem. Soc. Trans. 1906; 89: 179
    • 3a Nozaki H, Moriuti S, Yamabe M, Noyori R. Tetrahedron Lett. 1966; 7: 59
    • 3b Nozaki H, Takaya H, Moriuti S, Noyori R. Tetrahedron 1968; 24: 3655
    • 3c Dauben WG, Hendricks RT, Luzzio MJ, Ng HP. Tetrahedron Lett. 1990; 31: 6969
    • 4a Lowenthal RE, Abiko A, Masamune S. Tetrahedron Lett. 1990; 31: 6005
    • 4b Evans DA, Woerpel KA, Hinman MM, Faul MM. J. Am. Chem. Soc. 1991; 113: 726
    • 4c Evans DA, Woerpel KA, Scott MJ. Angew. Chem. Int. Ed. 1992; 31: 430
    • 4d Pfaltz A. Acc. Chem. Res. 1993; 26: 339
    • 4e Díaz-Requejo MM, Pérez PJ. J. Organomet. Chem. 2001; 617: 110
    • 4f Straub BF, Hofmann P. Angew. Chem. Int. Ed. 2001; 40: 1288
    • 4g Fraile JM, García JI, Martínez-Merino V, Mayoral JA, Salvatella L. J. Am. Chem. Soc. 2001; 123: 7616
    • 4h Liao S, Sun XL, Tang Y. Acc. Chem. Res. 2014; 47: 2260
    • 4i Xie JH, Zhu QL. Acc. Chem. Res. 2008; 41: 581
    • 4j Peris E. Chem. Rev. 2018; 118: 9988
    • 5a Diaz-Requejo MM, Belderrain TR, Nicasio MC, Trofimenko S, Pérez PJ. J. Am. Chem. Soc. 2002; 124: 896
    • 5b Flynn CJ, Elcoate CJ, Lawrence SE, Maguire AR. J. Am. Chem. Soc. 2010; 132: 1184
    • 5c Carreras V, Besnard C, Gandon V, Ollevier T. Org. Lett. 2019; 21: 9094
    • 5d Zhang YZ, Zhu SF, Wang LX, Zhou QL. Angew. Chem. Int. Ed. 2008; 47: 8496
    • 5e Maier TC, Fu GC. J. Am. Chem. Soc. 2006; 128: 4594
    • 5f Morilla ME, Molina MJ, Diaz-Requejo MM, Belderrain TR, Nicasio MC, Trofimenko S, Pérez PJ. Organometallics 2003; 22: 2914
    • 6a Xu H, Li Y, Cai Y, Wang G, Zhu SF, Zhou QL. J. Am. Chem. Soc. 2017; 139: 7697
    • 6b Noyori R, Takaya H, Nakanisi Y, Nozaki H. Can. J. Chem. 1969; 47: 1242
    • 7a Huang Y, Li X, Wang X, Yu Y, Zheng J, Wu W, Jiang H. Chem. Sci. 2017; 8: 7047
    • 7b Dong K, Pei C, Zeng Q, Qiu L, Hu W, Qian Y, Xu X. Chem. Commun. 2019; 55: 6393
    • 7c Luo H, He C, Jiang H, Zhu S. Chin. J. Chem. 2020; 38: 1052
    • 8a Qu J, Xu Z, Zhou J, Cao C, Sun X, Dai L, Tang Y. Adv. Synth. Catal. 2009; 351: 308
    • 8b Alavala GK, Sajjad F, Shi T, Kang Z, Ma M, Xing D, Hu W. Chem. Commun. 2018; 54: 12650
    • 8c Nair VN, Kojasoy V, Laconsay CJ, Kong WY, Tantillo DJ, Tambar UK. J. Am. Chem. Soc. 2021; 143: 9016
    • 9a Zeng Q, Dong K, Pei C, Dong S, Hu W, Qiu L, Xu X. ACS Catal. 2019; 9: 10773
    • 9b Pei C, Rong GW, Yu ZX, Xu X. J. Org. Chem. 2018; 83: 13243
    • 10a Marichev KO, Wang K, Dong K, Greco N, Massey LA, Deng Y, Arman H, Doyle MP. Angew. Chem. Int. Ed. 2019; 58: 16188
    • 10b Marichev KO, Dong K, Massey LA, Deng Y, Angelis L, Wang K, Arman H, Doyle MP. Nat. Commun. 2019; 10: 5328
    • 10c Marichev KO, Doyle MP. Org. Biomol. Chem. 2019; 17: 4183
    • 11a Yang JM, Li ZQ, Li ML, He Q, Zhu SF, Zhou QL. J. Am. Chem. Soc. 2017; 139: 3784
    • 11b Zhu S, Zhou QL. Acc. Chem. Res. 2012; 45: 1365
    • 13a Álvarez M, Besora M, Molina F, Maseras F, Belderrain TR, Pérez PJ. J. Am. Chem. Soc. 2021; 143: 4837
    • 13b Rodríguez AM, Molina F, Díaz-Requejo MM, Pérez PJ. Adv. Synth. Catal. 2020; 362: 1998
    • 14a Davies HM. L, Hedley SJ. Chem. Soc. Rev. 2007; 36: 1109
    • 14b Alford JS, Davies HM. L. Chem. Soc. Rev. 2014; 43: 5151
  • 15 Zhao X, Zhang Y, Wang J. Chem. Commun. 2012; 48: 10162
  • 16 Kirmse W. Angew. Chem. Int. Ed. 2003; 42: 1088
  • 17 Dong K, Liu M, Xu X. Molecules 2022; 27: 3088
    • 19a Hu F, Xia Y, Ma C, Zhang Y, Wang J. Chem. Commun. 2015; 51: 7986
    • 19b Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
    • 19c Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 19d Gao X, Wu B, Yan Z, Zhou YZ. Org. Biomol. Chem. 2016; 14: 8237
    • 19e Wu JQ, Yang Z, Zhang SS, Jiang CY, Li Q, Huang ZS, Wang H. ACS Catal. 2015; 5: 6453
    • 19f Chen X, Hu X, Bai S, Deng Y, Jiang H, Zeng W. Org. Lett. 2016; 18: 192
    • 19g Jeong J, Patel P, Hwang H, Chang S. Org. Lett. 2014; 16: 4598
    • 19h Ai W, Yang X, Wu Y, Wang X, Li Y, Yang Y, Zhou B. Chem. Eur. J. 2014; 20: 17653
    • 19i Wang L, Li Z, Qu X, Peng WM, Hu SQ, Wang HB. Tetrahedron Lett. 2015; 56: 6214

      Selected recent references:
    • 20a Hu F, Xia Y, Ye F, Liu Z, Ma C, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 1364 ; Angew. Chem. 2014, 126, 1388
    • 20b Liang Y, Yu K, Li B, Xu S, Song H, Wang B. Chem. Commun. 2014; 50: 6130
    • 20c Son J.-Y, Kim S, Jeon WH, Lee PH. Org. Lett. 2015; 17: 2518
    • 20d Yu S, Liu S, Lan Y, Wan B, Li X. J. Am. Chem. Soc. 2015; 137: 1623
    • 20e Zhou B, Chen Z, Yang Y, Ai W, Tang H, Wu Y, Zhu W, Li Y. Angew. Chem. Int. Ed. 2015; 54: 12121
    • 20f Yang Y, Wang X, Li Y, Zhou B. Angew. Chem. Int. Ed. 2015; 54: 15400 Angew. Chem. 2015, 127, 15620
    • 20g Mishra NK, Choi M, Jo H, Oh Y, Sharma S, Han SH, Jeong T, Han S, Lee SY, Kim IS. Chem. Commun. 2015; 51: 17229
    • 20h Shi J, Zhou J, Yan Y, Jia J, Liu X, Song H, Xu HE, Yi W. Chem. Commun. 2015; 51: 668
    • 20i Qi Z, Yu S, Li X. Org. Lett. 2016; 18: 700
    • 20j Dateer RB, Chang S. Org. Lett. 2016; 18: 68
    • 20k Shi P, Wang L, Guo S, Chen K, Wang J, Zhu J. Org. Lett. 2017; 19: 4359
    • 20l Yan SY, Ling PX, Shi BF. Adv. Synth. Catal. 2017; 359: 2912
    • 20m Long Z, Wang Z, Zhou D, Wan D, You J. Org. Lett. 2017; 19: 2777
  • 21 Tayama E, Yanaki T, Iwamoto H, Hasegawa E. Eur. J. Org. Chem. 2010; 6719
  • 22 Tayama E, Ishikawa M, Iwamoto H, Hasegawa E. Tetrahedron Lett. 2012; 53: 5159
  • 23 Gao L, Liu S, Wang ZC, Mao Y, Shi SL. Asian J. Org. Chem. 2022; 11: e202100723
  • 24 Yang Z, Pei C, Koenigs RM. Org. Lett. 2020; 22: 7234
    • 25a Malátková P, Wsól V. Drug Metab. Rev. 2014; 46: 96
    • 25b Magueur G, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J.-P. J. Fluorine Chem. 2006; 127: 637
    • 25c Leriche C, He X, Chang TC, Liu H.-W. J. Am. Chem. Soc. 2003; 125: 6348
  • 26 Hatakeyama T, Kondo Y, Fujiwara Y, Takaya H, Ito S, Nakamura E, Nakamura M. Chem. Commun. 2009; 1216
  • 27 Fan S, He CY, Zhang X. Chem. Commun. 2010; 46: 4926
  • 28 Xu S, Wu G, Ye F, Wang X, Li H, Zhao X, Zhang Z, Wang J. Angew. Chem. Int. Ed. 2015; 54: 4669
  • 29 Ma B, Tang Z, Zhang J, Liu L. Chem. Commun. 2020; 56: 9485
    • 30a Shao R. Curr. Mol. Pharmacol. 2008; 1: 50
    • 30b Maretina IA, Trofimov AB. Russ. Chem. Rev. 2006; 75: 825
    • 30c Kadela-Tomanek M, Bębenek E, Chrobak E, Latocha M, Boryczka S. Molecules 2017; 22: 447
    • 31a Hamann PR, Upeslacis J, Borders DB. Enediynes . In Anticancer Agents from Natural Products, 2nd ed. Cragg GM, Kingston DG, Newman ID. J. CRC Press; Boca Raton (FL, USA): 2011: 575-621
    • 31b Marsault E, Peterson ML. J. Med. Chem. 2011; 54: 1961
    • 31c Driggers EM, Hale SP, Lee J, Terrett NK. Nat. Rev. Drug Discovery 2008; 7: 608
    • 31d Gampe CM, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3766
    • 33a Pei C, Zhang C, Qian Y, Xu X. Org. Biomol. Chem. 2018; 16: 8677
    • 33b Archambeau A, Miege F, Meyer C, Cossy J. Acc. Chem. Res. 2015; 48: 1021
    • 33c Zheng Y, Mao J, Weng Y, Zhang X, Xu X. Org. Lett. 2015; 17: 5638
    • 33d Zeng Q, Dong K, Huang J, Qiu L, Xu X. Org. Biomol. Chem. 2019; 17: 2326
  • 34 Carreras J, Popowski Y, Caballero A, Amir E, Perez PJ. J. Org. Chem. 2018; 83: 11125
    • 35a Iqbal K, Jamal Q, Iqbal J, Sadaf Afreen M, Sandhu MZ. A, Dar E, Farooq U, Mushtaq MF, Arshad N, Iqbal MM. Trop. J. Pharm. Res. 2017; 16: 337
    • 35b Deng Y, Sun C, Hunt DK, Fyfe C, Chen C.-L, Grossman TH, Sutcliffe JA, Xiao X.-Y. J. Med. Chem. 2017; 60: 2498
    • 35c Narsimha S, Battula K, Reddy NV. Synth. Commun. 2017; 47: 928
  • 36 Çavus MS, Gür M, Nesrin S. J. Mol. Struct. 2017; 1139: 111
    • 37a Molnar M, Pavić V, Šarkanj B, Čačić M, Vuković D, Klenkar J. Heterocycl. Commun. 2017; 23: 35
    • 37b Chitra C, Sudarsan S, Sakthivel S, Guhanathan S. Int. J. Biol. Macromol. 2017; 95: 363
    • 37c Wahbi HI, Ishak CY, Khalid A, Adlan T. Int. J. Pharm. Phytopharmacol. Res. 2014; 4: 13
    • 38a Putta RR, Donthamsetty V S, Guda DR, Adivireddy P, Padmavathi V. J. Heterocycl. Chem. 2017; 4: 2216
    • 38b Ferrand G, Dumas H, Depin JC, Quentin Y. Eur. J. Med. Chem. 1996; 31: 273
    • 39a Ana SF, Luminita B. Mol. Diversity 2017; 21: 437
    • 39b Wang W, Zhou Y, Peng H, He H, Lu X. J. Fluorine Chem. 2017; 193: 8
    • 40a Liu Y, Qing L, Meng C, Shi J, Yang Y, Wang Z, Han G, Wang Y, Ding J, Meng L.-H, Wang Q. J. Med. Chem. 2017; 60: 2764
    • 40b Morsy SA, Farahat AA, Nasr MN. A, Tantawy AS. Saudi Pharm. J. 2017; 25: 873
    • 40c Thigulla Y, Kumar TU, Trivedi P, Ghosh B. ChemistrySelect 2017; 7: 2721
  • 41 Jha AK, Jain N. Chem. Commun. 2016; 52: 1831
  • 42 Biswas A, Karmakar U, Pal A, Samanta R. Chem. Eur. J. 2016; 22: 13826
  • 43 Monreal-Corona R, Díaz-Jiménez A, Roglans A, Poater A, Pla-Quintana A. Adv. Synth. Catal. 2023; 365: 760
  • 44 Johansen MB, Kerr MA. Org. Lett. 2010; 12: 4956
  • 45 Delgado-Rebollo M, Prieto A, Pérez PJ. ChemCatChem 2014; 6: 2047
    • 47a Meloche JL, Ashfeld BL. A. Angew. Chem. Int. Ed. 2017; 56: 6604
    • 47b Rodriguez KX, Kaltwasser N, Toni TA, Ashfeld BL. Org. Lett. 2017; 19: 2482
    • 47c Rodriguez KX, Pilato TC, Ashfeld BL. Chem. Sci. 2018; 9: 3221
  • 48 Bhat A, Tucker N, Lin J.-B, Grover H. Chem. Commun. 2021; 57: 10556
  • 49 Zhao X, Wu G, Zhang Y, Wang Z. J. Am. Chem. Soc. 2011; 133: 3296
  • 50 Lonka MR, Zhang J, Gogula T, Zou H. Org. Biomol. Chem. 2019; 17: 7455
    • 51a Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
    • 51b Carroll MP, Guiry PJ. Chem. Soc. Rev. 2014; 43: 819
    • 51c Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Chem. Rev. 2015; 115: 11239

      Selected literature:
    • 52a Lim AD, Codelli JA, Reisman SE. Chem. Sci. 2013; 4: 650
    • 52b Knöpfel TF, Zarotti P, Ichikawa T, Carreira EM. J. Am. Chem. Soc. 2005; 127: 9682
    • 52c Rokade BV, Guiry PJ. ACS Catal. 2017; 7: 2334
    • 52d Knöpfel TF, Aschwanden P, Ichikawa T, Watanabe T, Carreira EM. Angew. Chem. Int. Ed. 2004; 43: 5971
  • 53 Biswas A, Pan S, Samanta R. Org. Lett. 2022; 24: 1631
  • 54 Zhou Q, Li S, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2017; 56: 16013