Subscribe to RSS
DOI: 10.1055/a-2176-4233
Analysis of Suspected Achromatopsia by Multimodal Diagnostic Testing
Analyse bei Verdacht auf Achromatopsie mit multimodaler Diagnostik
Abstract
Background Achromatopsia (ACHM) as a hereditary cone disease might manifest in a stationary and progressive manner. The proper clinical and genetic diagnosis may allow an individual prognosis, accurate genetic counselling, and the optimal choice of low vision aids. The primary aim of the study was to determine the spectrum of clinical and genetic diagnostics required to characterize the ACHM.
Methods A retrospective analysis was performed in 8 patients from non-related families (5 ♀,3 ♂); age at diagnosis: 3 – 56 y, mean 18.13 (SD ± 18.22). Clinical phenotyping, supported by colour vision test, fundus photography-, autofluorescence- (FAF), infra-red- (IR), OCT imaging and electroretinography provided information on the current status and the course of the disease over the years. In addition, genetic examinations were performed with ACHM relevant testing (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H and the transcription factor ATF6).
Results All patients suffered photophobia and reduced visual acuity (mean: 0.16 [SD ± 0.08]). Nystagmus was identified in 7 from 8 subjects and in one patient a head-turn right helped to reduce the nystagmus amplitude. Colour vision testing confirmed complete achromatopsia in 7 out of 8 patients. Electrophysiology found severely reduced photopic- but also scotopic responses. Thinning and interruption of the inner segment ellipsoid (ISe) line within the macula but also FAF- and IR abnormalities in the fovea and/or parafovea were characteristic in all ACHM patients. Identification of pathogenic mutations in 7 patients helped to confirm the diagnosis of ACHM (3 adults, 4 children; 3 ♀ and 4 ♂). Achromatopsia was linked to CNGA3 (2 ♀, 1 ♂) and CNGB3 variants (2 ♀, 3 ♂). The youngest patient (♀, 10 y) had 3 different CNGB3 variants on different alleles. In a patient (♂, 29 y) carrying 2 pathogenic digenic-triallelic CNGA3- and CNGB3-mutations, a severe progression of ISe discontinuity to coloboma-like macular atrophy was observed during the 12-year follow-up. The oldest female (67 y) showed a compound homozygous CNGA3- and heterozygous CNGB3-, as well as a heterozygous GUCY2D variants. The destruction of her ISe line was significantly enlarged and represented a progressive cone-rod phenotype in comparison to other ACHM patients. In a patient (♂, 45 y) carrying a pathogenic CNGB3 and USH2 mutation, a severe macular oedema and a rod-cone phenotype was observed. In addition, two variants in C2ORF71 considered as VOS were found. One patient showed the rare ATF6 mutation, where a severe coloboma-like macular atrophy was observed on the left eye as early as at the age of three years.
Conclusion Combining multimodal ophthalmological diagnostics and molecular genetics when evaluating patients with ACHM helps in characterizing the disease and associated modifiers, and is therefore strongly recommended for such patients.
Zusammenfassung
Hintergrund Achromatopsie (ACHM) als eine erbliche Zapfenerkrankung kann sich als stationäre oder als progressive Erkrankung manifestieren. Die genaue klinische und genetische Diagnostik kann eine individuelle Prognose, akkurate genetische Beratung und eine optimale Wahl von Sehhilfen erlauben. Das primäre Ziel der Studie war, das Spektrum der klinischen und genetischen Diagnostik zu ermitteln, um das Krankheitsbild der ACHM zu charakterisieren.
Methoden Eine retrospektive Analyse wurde bei 8 Patienten von nicht verwandten Familien (5 ♀,3 ♂) durchgeführt; das Alter war zum Zeitpunkt der Diagnosestellung: 5 – 56 Jahre, Mittelwert 18,13 (SD ± 18,22). Die klinische Phänotypisierung, unterstützt durch Farbsehtests, Fundusfotografie, Autofluoreszenz- (FAF), Infrarot- (IR), OCT-Bildgebung und Elektroretinografie lieferten Informationen über den aktuellen Status und den Verlauf der Erkrankung über Jahre. Zusätzlich wurden für ACHM relevante genetische Tests durchgeführt (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H und der Transcription Factor ATF6).
Ergebnisse Alle Patienten litten an Photophobie und reduzierter Sehschärfe (Mittelwert: 0,16 (SD ± 0,08). Nystagmus wurde bei 7 von 8 Patienten festgestellt und bei einem Patienten half es, mit einer Rechts-Kopfdrehung, die Nystagmusamplitude zu verringern. Farbsehtests bestätigten die komplette Achromatopsie bei 7 von 8 Patienten. Bei der Elektrophysiologie wurden stark reduzierte photopische, aber auch skotopische Antworten gefunden. Eine Ausdünnung und Unterbrechung der ISe-Line innerhalb der Makula, aber auch FAF- und IR-Auffälligkeiten in der Fovea und/oder Parafovea waren charakteristisch bei allen ACHM-Patienten. Die Identifizierung von pathogenen Mutationen bei 7 Patienten half, die Diagnose der ACHM (3 Erwachsene, 4 Kinder; 3 ♀ and 4 ♂) zu bestätigen. Achromatopsie war verknüpft mit CNGA3- (2 ♀, 1 ♂) und CNGB3-Varianten (2 ♀, 3 ♂). Der jüngste Patient (♀, 10 Jahre) hatte 3 verschiedene CNGB3-Varianten auf verschiedenen Allelen. Bei einem Patienten (♂, 29 Jahre), der 2 pathogene digenisch-triallelische CNGA3- and CNGB3-Mutationen trug, wurde eine schwerwiegende Progression der ISe-Unterbrechung zu einer Coloboma-artigen Makulaatrophie beobachtet während der 12 Jahre Follow-up-Zeit. Die älteste weibliche Patientin (67 Jahre) zeigte eine kombinierte homozygote CNGA3- und heterozygote CNGB3-Variante sowie eine heterozygote GUCY2D-Variante. Die Zerstörung ihrer ISe-Line war signifikant vergrößert und repräsentierte einen progressiven Zapfen-Stäbchen-Phänotyp im Vergleich zu anderen ACHM-Patienten. Bei einem Patienten (♂, 45 Jahre), der pathogene CNGB3- und USH2-Mutation trug, wurde ein schwerwiegendes Makulaödem und ein Stäbchen-Zapfen-Phänotyp beobachtet. Zusätzlich wurden bei ihm 2 Varianten in C2ORF71 mit unklarer Bedeutung (VOS) gefunden. Eine Patientin (♀, 26 Jahre) zeigte eine seltene ATF6-Mutation, assoziiert mit monolateraler Coloboma-artiger Makulaatrophie.
Schlussfolgerung Die Kombination von multimodaler ophthalmologischer Diagnostik und Molekulargenetik bei der Evaluierung von Patienten mit ACHM hilft bei der Charakterisierung der Erkrankung und deren assoziierten Modifikatoren und ist aus diesem Grund für solche Patienten empfehlenswert.
Already known:
Achromatopsia as hereditary cone disease may manifest in a stationary and progressive manner. Apart from typical, also atypical manifestations of ACHM are described.
Newly described:
The present study highlights the importance of combined multimodal ophthalmological diagnostics and molecular genetics when evaluating patients with ACHM. This approach is of importance not only in characterizing the ACHM disease, but also the possible effect of future therapies, associated disease modifiers, as well as in family counselling, and is therefore strongly recommended for our ACHM patients.
Key words
inherited cone disorder - genetics - achromatopsia - cone dystrophy - colour vision discrimination - cone photoreceptor function - foveomacular degenerationSchlüsselwörter
vererbte Zapfenerkrankung - Genetik - Achromatopsie - Zapfendystrophie - Farbseh-Unterscheidung - Zapfen-Photorezeptor-Funktion - foveomakuläre DegenerationPublication History
Received: 23 June 2023
Accepted: 15 September 2023
Accepted Manuscript online:
15 September 2023
Article published online:
23 October 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur/References
- 1 Greenberg JP, Sherman J, Zweifel SA. et al. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia. JAMA Ophthalmol 2014; 132: 437-445
- 2 Michaelides M, Hunt DM, Moore AT. The cone dysfunction syndromes. Br J Ophthalmol 2004; 88: 291-307
- 3 Hassall MM, Barnard AR, MacLaren RE. Gene Therapy for Color Blindness. Yale J Biol Med 2017; 90: 543-551
- 4 Poloschek CM, Kohl S. Achromatopsia. Ophthalmologe 2010; 107: 571-580
- 5 Sundaram V, Wilde C, Aboshiha J. et al. Retinal structure and function in achromatopsia: implications for gene therapy. Ophthalmology 2014; 121: 234-245
- 6 Fahim AT, Khan NW, Zahid S. et al. Diagnostic fundus autofluorescence patterns in achromatopsia. Am J Ophthalmol 2013; 156: 1211-1219.e2
- 7 Genead MA, Fishman GA, Rha J. et al. Photoreceptor structure and function in patients with congenital achromatopsia. Invest Ophthalmol Vis Sci 2011; 52: 7298-7308
- 8 Aboshiha J, Dubis AM, Cowing J. et al. A prospective longitudinal study of retinal structure and function in achromatopsia. Invest Ophthalmol Vis Sci 2014; 55: 5733-5743
- 9 Georgiou M, Singh N, Kane T. et al. Long-Term Investigation of Retinal Function in Patients with Achromatopsia. Invest Ophthalmol Vis Sci 2020; 61: 38
- 10 Georgiou M, Litts KM, Kalitzeos A. et al. Adaptive Optics Retinal Imaging in CNGA3-Associated Achromatopsia: Retinal Characterization, Interocular Symmetry, and Intrafamilial Variability. Invest Ophthalmol Vis Sci 2019; 60: 383-396
- 11 Cicerone CM, Nerger JL. The density of cones in the fovea centralis of the human dichromat. Vision Res 1989; 29: 1587-1595
- 12 Thiadens AA, Somervuo V, van den Born LI. et al. Progressive loss of cones in achromatopsia: an imaging study using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 5952-5957
- 13 Leng T, Marmor MF, Kellner U. et al. Foveal cavitation as an optical coherence tomography finding in central cone dysfunction. Retina 2012; 32: 1411-1419
- 14 Thomas MG, Kumar A, Kohl S. et al. High-resolution in vivo imaging in achromatopsia. Ophthalmology 2011; 118: 882-887
- 15 Barthelmes D, Sutter FK, Kurz-Levin MM. et al. Quantitative analysis of OCT characteristics in patients with achromatopsia and blue-cone monochromatism. Invest Ophthalmol Vis Sci 2006; 47: 1161-1166
- 16 Proudlock F, Gottlob I. Foveal development and nystagmus. Ann N Y Acad Sci 2011; 1233: 292-297
- 17 Thomas MG, Kumar A, Mohammad S. et al. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity?. Ophthalmology 2011; 118: 1653-1660
- 18 Thomas MG, McLean RJ, Kohl S. et al. Early signs of longitudinal progressive cone photoreceptor degeneration in achromatopsia. Br J Ophthalmol 2012; 96: 1232-1236
- 19 Triantafylla M, Papageorgiou E, Thomas MG. et al. Longitudinal Evaluation of Changes in Retinal Architecture Using Optical Coherence Tomography in Achromatopsia. Invest Ophthalmol Vis Sci 2022; 63: 6
- 20 Wissinger B, Gamer D, Jägle H. et al. CNGA3 mutations in hereditary cone photoreceptor disorders. Am J Hum Genet 2001; 69: 722-737
- 21 Johnson S, Michaelides M, Aligianis IA. et al. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J Med Genet 2004; 41: e20
- 22 Kohl S, Varsanyi B, Antunes GA. et al. CNGB3 mutations account for 50 % of all cases with autosomal recessive achromatopsia. Eur J Hum Genet 2005; 13: 302-308
- 23 Kohl S, Coppieters F, Meire F. et al. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia. Am J Hum Genet 2012; 91: 527-532
- 24 Aligianis IA, Forshew T, Johnson S. et al. Mapping of a novel locus for achromatopsia (ACHM4) to 1 p and identification of a germline mutation in the alpha subunit of cone transducin (GNAT2). J Med Genet 2002; 39: 656-660
- 25 Kohl S, Baumann B, Rosenberg T. et al. Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet 2002; 71: 422-425
- 26 Kohl S, Zobor D, Chiang WC. et al. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat Genet 2015; 47: 757-765
- 27 World Medical Association (WMA). WMA Declaration of Helsinki – Ethical Principles for Medical Research involving Human Subjects. Accessed September 25, 2023 at: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects
- 28 McCulloch DL, Marmor MF, Brigell MG. et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 2015; 130: 1-12
- 29 Hoffmann MB, Bach M, Kondo M. et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2021 update). Doc Ophthalmol 2021; 142: 5-16
- 30 Richards S, Aziz N, Bale S. et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405-424
- 31 Riggs ER, Andersen EF, Cherry AM. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 2020; 22: 245-257
- 32 Taylor RL, Parry NRA, Barton SJ. et al. Panel-Based Clinical Genetic Testing in 85 Children with Inherited Retinal Disease. Ophthalmology 2017; 124: 985-991
- 33 Mayer AK, Van Cauwenbergh C, Rother C. et al. ACHM Study Group. CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients. Hum Mutat 2017; 38: 1579-1591
- 34 Stone EM, Andorf JL, Whitmore SS. et al. Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease. Ophthalmology 2017; 124: 1314-1331
- 35 Li S, Huang L, Xiao X. et al. Identification of CNGA3 mutations in 46 families: common cause of achromatopsia and cone-rod dystrophies in Chinese patients. JAMA Ophthalmol 2014; 132: 1076-1083
- 36 Burkard M, Kohl S, Krätzig T. et al. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J Clin Invest 2018; 128: 5663-5675
- 37 Kelsell RE, Gregory-Evans K, Gregory-Evans CY. et al. Localization of a gene (CORD7) for a dominant cone-rod dystrophy to chromosome 6q. Am J Hum Genet 1998; 63: 274-279
- 38 Michalakis S, Gerhardt M, Rudolph G. et al. Achromatopsia: Genetics and Gene Therapy. Mol Diagn Ther 2022; 26: 51-59
- 39 Biel M, Seeliger M, Pfeifer A. et al. Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci U S A 1999; 96: 7553-7557
- 40 Ding XQ, Harry CS, Umino Y. et al. Impaired cone function and cone degeneration resulting from CNGB3 deficiency: down-regulation of CNGA3 biosynthesis as a potential mechanism. Hum Mol Genet 2009; 18: 4770-4780
- 41 Kirkman MA, Yu-Wai-Man P, Korsten A. et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain 2009; 132: 2317-2326
- 42 Solaki M, Baumann B, Reuter P. et al. Comprehensive variant spectrum of the CNGA3 gene in patients affected by achromatopsia. Hum Mutat 2022; 43: 832-858
- 43 Zrenner E, Magnussen S, Lorenz B. [Blue cone monochromasia: diagnosis, genetic counseling and optical aids]. Klin Monbl Augenheilkd 1988; 193: 510-517
- 44 McClements M, Davies WI, Michaelides M. et al. X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene. Vision Res 2013; 80: 41-50
- 45 Komáromy AM, Alexander JJ, Rowlan JS. et al. Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet 2010; 19: 2581-2593
- 46 Carvalho LS, Xu J, Pearson RA. et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet 2011; 20: 3161-3175
- 47 Michalakis S, Mühlfriedel R, Tanimoto N. et al. Gene therapy restores missing cone-mediated vision in the CNGA3-/- mouse model of achromatopsia. Adv Exp Med Biol 2012; 723: 183-189
- 48 Pang JJ, Deng WT, Dai X. et al. AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia. PLoS One 2012; 7: e35250
- 49 Li Y, Tao W, Luo L. et al. CNTF induces regeneration of cone outer segments in a rat model of retinal degeneration. PLoS One 2010; 5: e9495
- 50 Wen R, Tao W, Luo L. et al. Regeneration of cone outer segments induced by CNTF. Adv Exp Med Biol 2012; 723: 93-99
- 51 Wen R, Tao W, Li Y. et al. CNTF and retina. Prog Retin Eye Res 2012; 31: 136-151
- 52 Zein WM, Jeffrey BG, Wiley HE. et al. CNGB3-achromatopsia clinical trial with CNTF: diminished rod pathway responses with no evidence of improvement in cone function. Invest Ophthalmol Vis Sci 2014; 55: 6301-6308
- 53 Langlo C, Dubis A, Michaelides M. et al. CNGB3-Achromatopsia Clinical Trial With CNTF: Diminished Rod Pathway Responses With No Evidence of Improvement in Cone Function. Invest Ophthalmol Vis Sci 2015; 56: 1505
- 54 Dahlmann-Noor A, Vijay S, Jayaram H. et al. Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve. Can J Ophthalmol 2010; 45: 333-341
- 55 Wang S, Lu B, Girman S. et al. Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One 2010; 5: e9200
- 56 Michaelides M, Hirji N, Wong SC. et al. First-in-Human Gene Therapy Trial of AAV8-hCARp.hCNGB3 in Adults and Children with CNGB3-associated Achromatopsia. Am J Ophthalmol 2023; 253: 243-251
- 57 Kroeger H, Grandjean JMD, Chiang WJ. et al. ATF6 is essential for human cone photoreceptor development. Proc Natl Acad Sci U S A 2021; 118: e2103196118