Erfahrungsheilkunde 2024; 73(02): 75-81
DOI: 10.1055/a-2257-6706
Praxis

Mitochondrien und Orthomolekularmedizin: neue Perspektiven in der Behandlung des Fibromyalgie-Syndroms

Cosmo Bulasikis

Zusammenfassung

Das Fibromyalgie-Syndrom, eine häufige Schmerzerkrankung mit Symptomen wie Schmerzen, Müdigkeit und kognitiven Störungen, ist eng mit mitochondrialen Dysfunktionen verbunden. Mitochondrien, die für die ATP-Produktion in den Zellen zuständig sind, spielen bei Fibromyalgie eine Schlüsselrolle. Dysfunktionale Mitochondrien führen zu verringerter ATP-Produktion und erhöhter Abhängigkeit vom weniger effizienten anaeroben Stoffwechsel, was die Symptome von Fibromyalgie verstärken kann. Aktuelle Forschungen zeigen eine deutliche Korrelation zwischen mitochondrialen Dysfunktionen und Fibromyalgie, einschließlich Störungen im Muskelenergiestoffwechsel und Anzeichen von oxidativem sowie nitrosativem Stress. Orthomolekularmedizinische Ansätze wie die Supplementierung mit Koenzym Q10, L-Carnitin, B-Vitaminen, D-Ribose und R-Alpha-Liponsäure könnten die mitochondriale Funktion verbessern und bieten neue Behandlungsmöglichkeiten. Diese Methoden zielen darauf ab, die zugrunde liegende Mitochondriopathie zu behandeln, und könnten einen wesentlichen Fortschritt in der Behandlung von Fibromyalgie darstellen. Zusätzlich spielen Lebensstil- und Verhaltensansätze eine wichtige Rolle in der Therapie, indem sie die mitochondriale Biogenese und den Muskelstoffwechsel fördern.

Abstract

The fibromyalgia syndrome, a common pain disorder with symptoms such as pain, fatigue, and cognitive disorders, is closely linked to mitochondrial dysfunctions. Mitochondria, which are responsible for the ATP production in the cells, play a significant role with fibromyalgia. Dysfunctional mitochondria lead to a decreased ATP production and an increased dependency on less efficient anaerobic metabolism, which can intensify the symptoms of fibromyalgia. Current research shows a clear correlation between mitochondrial dysfunctions and fibromyalgia, including disorders in the energy metabolism of the muscles and signs of oxidative as well as nitrosative stress. Approaches from orthomolecular medicine such as supplementation with coenzyme Q10, L-carnitine, B vitamins, D-ribose, and R-alpha lipoic acid could improve the mitochondrial function and offer new treatment options. These methods aim to treat the underlying mitochondriopathy and could mark a substantial progress in the treatment of fibromyalgia. Lifestyle and behavioral approaches also play a significant role in the therapy by stimulating mitochondrial biogenesis and muscle metabolism.



Publication History

Article published online:
09 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Cordero MD, De Miguel M, Moreno Fernández AM. et al. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: Implications in the pathogenesis of the disease. Arthritis Res Ther 2010; 12 (1) R17
  • 2 Gerdle B, Ghafouri B, Lund E. et al. Evidence of mitochondrial dysfunction in fibromyalgia: Deviating muscle energy metabolism detected using microdialysis and magnetic resonance. J Clin Med 2020; 9 (11) 3527
  • 3 Deutsche Schmerzgesellschaft e. V.. S3-Leitlinie Definition, Pathophysiologie, Diagnostik und Therapie des Fibromyalgiesyndroms. 2017
  • 4 Cordero MD, Díaz-Parrado E, Carrión AM. et al. Is inflammation a mitochondrial dysfunction-dependent event in fibromyalgia?. Antioxid Redox Signal 2013; 18 (7) 800-807
  • 5 Meeus M, Nijs J, Hermans L. et al. The role of mitochondrial dysfunctions due to oxidative and nitrosative stress in the chronic pain or chronic fatigue syndromes and fibromyalgia patients: Peripheral and central mechanisms as therapeutic targets?. Expert Opin Ther Targets 2013; 17 (9) 1081-1089
  • 6 Georgiev A, Granata C, Roden M. The role of mitochondria in the pathophysiology and treatment of common metabolic diseases in humans. Am J Physiol Cell Physiol 2022; 322 (6) C1248-C1259
  • 7 Know L. Mitochondria and the future of medicine: The key to understanding disease, chronic illness, aging, and life itself. Chelsea: Green Publishing; 2018
  • 8 Souza FG, Cavalcante GC. Mitochondria in mycobacterium infection: From the immune system to mitochondrial haplogroups. Int J Mol Sci 2022; 23 (17) 9511
  • 9 Brum EDS, Fialho MFP, Fischer SPM. et al. Relevance of mitochondrial dysfunction in the reserpine-induced experimental fibromyalgia model. Molec Neurobiol 2020; 57 (10) 4202-4217
  • 10 Duberley KE, Heales SJ, Abramov AY. et al. Effect of coenzyme Q10 supplementation on mitochondrial electron transport chain activity and mitochondrial oxidative stress in coenzyme Q10 deficient human neuronal cells. Int J Biochem Cell Biol 2014; 50: 60-63
  • 11 Matthews RT, Yang L, Browne S. et al. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci USA 1998; 95 (15) 8892-8897
  • 12 Nicolson GL. Mitochondrial dysfunction and chronic disease: Treatment with natural supplements. Integr Med (Encinitas) 2014; 13 (4) 35-43
  • 13 López-Lluch G, Del Pozo-Cruz J, Sánchez-Cuesta A. et al. Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition 2019; 57: 133-140
  • 14 Gutierrez-Mariscal FM, Arenas-de Larriva AP, Limia-Perez L. et al. Coenzyme Q(10) supplementation for the reduction of oxidative stress: Clinical implications in the treatment of chronic diseases. Int J Mol Sci 2020; 21 (21) 7870
  • 15 Bengtsson A, Henriksson KG, Larsson J. Reduced high-energy phosphate levels in the painful muscles of patients with primary fibromyalgia. Arthritis Rheum 1986; 29 (7) 817-821
  • 16 Brault JJ, Terjung RL. Purine salvage to adenine nucleotides in different skeletal muscle fiber types. J Appl Physiol (1985) 2001; 91 (1) 231-238
  • 17 Seifert JG, Brumet A, St Cyr JA. The influence of D-ribose ingestion and fitness level on performance and recovery. J Int Soc Sports Nutr 2017; 14: 47
  • 18 Gebhart B, Jorgenson JA. Benefit of ribose in a patient with fibromyalgia. Pharmacotherapy 2004; 24 (11) 1646-1648
  • 19 Teitelbaum JE, Johnson C, St Cyr J. The use of D-ribose in chronic fatigue syndrome and fibromyalgia: A pilot study. J Altern Complement Med 2006; 12 (9) 857-862
  • 20 Bahl JJ, Bressler R. The pharmacology of carnitine. Annu Rev Pharmacol Toxicol 1987; 27: 257-277
  • 21 Binienda ZK. Neuroprotective effects of L-carnitine in induced mitochondrial dysfunction. Ann NY Acad Sci 2003; 993: 289-295 discussion 345–349
  • 22 Rebouche CJ. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann NY Acad Sci 2004; 1033: 30-41
  • 23 Hagen TM, Liu J, Lykkesfeldt J. et al. Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci USA 2002; 99 (4) 1870-1875
  • 24 Hoppel C. The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis 2003; 41 (4) 4-12
  • 25 Lombard KA, Olson AL, Nelson SE. et al. Carnitine status of lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr 1989; 50 (2) 301-306
  • 26 Vaz FM, Wanders RJ. Carnitine biosynthesis in mammals. Biochem J 2002; 361 (3) 417-429
  • 27 Fox C, Ramsoomair D, Carter C. Magnesium: Its proven and potential clinical significance. South Med J 2001; 94 (12) 1195-1201
  • 28 Kubota T, Shindo Y, Tokuno K. et al. Mitochondria are intracellular magnesium stores: Investigation by simultaneous fluorescent imagings in PC12 cells. Biochim Biophys Acta 2005; 1744 (1) 19-28
  • 29 Laires MJ, Monteiro CP, Bicho M. Role of cellular magnesium in health and human disease. Front Biosci 2004; 9: 262-276
  • 30 Kostov K, Halacheva L. Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension. Int J Mol Sci 2018; 19 (6) 1724
  • 31 Nair RR, Nair P. Alteration of myocardial mechanics in marginal magnesium deficiency. Magnes Res 2002; 15 (03/04) 287-306
  • 32 Touyz RM. Role of magnesium in the pathogenesis of hypertension. Mol Aspects Med 2003; 24 (01/03) 107-136
  • 33 Guerrera MP, Volpe SL, Mao JJ. Therapeutic uses of magnesium. Am Fam Physician 2009; 80 (2) 157-162
  • 34 Ates M, Kizildag S, Yuksel O. et al. Dose-dependent absorption profile of different magnesium compounds. Biol Trace Elem Res 2019; 192 (2) 244-251
  • 35 Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol 1997; 29 (3) 315-331
  • 36 Hagen TM, Ingersoll RT, Lykkesfeldt J. et al. (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. Faseb J 1999; 13 (2) 411-418
  • 37 Meydani M, Lipman RD, Han SN. et al. The effect of long-term dietary supplementation with antioxidants. Ann NY Acad Sci 1998; 854: 352-360
  • 38 Zhou L, Jin J, Song G. et al. α-Lipoic acid ameliorates mitochondrial impairment and reverses apoptosis in FABP3-overexpressing embryonic cancer cells. J Bioenerg Biomembr 2013; 45 (5) 459-466
  • 39 Brufani M, Figliola R. (R)-α-lipoic acid oral liquid formulation: Pharmacokinetic parameters and therapeutic efficacy. Acta Biomed 2014; 85 (2) 108-115
  • 40 Salehi B, Berkay Yilmaz Y. et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules 2019; 9 (8) 356
  • 41 Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000; 80 (3) 1107-1213
  • 42 Sumien N, Shetty RA, Gonzales EB. Creatine, creatine kinase, and aging. Subcell Biochem 2018; 90: 145-168
  • 43 Park JH, Phothimat P, Oates CT. et al. Use of P-31 magnetic resonance spectroscopy to detect metabolic abnormalities in muscles of patients with fibromyalgia. Arthritis Rheum 1998; 41 (3) 406-413
  • 44 Walter MC, Lochmüller H, Reilich P. et al. Creatine monohydrate in muscular dystrophies: A double-blind, placebo-controlled clinical study. Neurology 2000; 54 (9) 1848-1850
  • 45 Kreider RB, Jäger R, Purpura M. Bioavailability, efficacy, safety, and regulatory status of creatine and related compounds: A critical review. Nutrients 2022; 14 (5) 1035
  • 46 Antonio J, Candow DG, Forbes SC. et al. Common questions and misconceptions about creatine supplementation: What does the scientific evidence really show?. J Int Soc Sports Nutr 2021; 18 (1) 13
  • 47 Hanna M, Jaqua E, Nguyen V. et al. B vitamins: Functions and uses in medicine. Perm J 2022; 26 (2) 89-97
  • 48 Depeint F, Bruce WR, Shangari N. et al. Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact 2006; 163 (01/02) 94-112
  • 49 Zak RB, Shute RJ, Heesch MW. et al. Impact of hot and cold exposure on human skeletal muscle gene expression. Appl Physiol Nutr Metab 2017; 42 (3) 319-325
  • 50 Pintus F, Floris G, Rufini A. Nutrient availability links mitochondria, apoptosis, and obesity. Aging (Albany NY) 2012; 4 (11) 734-741