Aktuelle Ernährungsmedizin 2024; 49(05): 372-386
DOI: 10.1055/a-2316-8202
Übersicht

Die Zukunft wird „algig“-Lebensmittel aus dem Wasser, ihr Potenzial für eine pflanzenbasierte Ernährung

The Future will be ”Algae”-Food from Water and its Potential for a Plant-Based Diet
1   Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
,
Annalena Janentzky
1   Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
,
Stephan C. Bischoff
1   Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
› Author Affiliations
Fördermittel Ministerium für Ernährung, Ländlichen Raum und Verbraucherschutz innerhalb der Landesförderung „Nachhaltige Bioökonomie als Innovationsmotor für den Ländlichen Raum“ — MikroFisch, Förderkennzeichen BWFE220021

Zusammenfassung

Algen, unterteilt in Makroalgen und Mikroalgen, stellen eine vielversprechende Ressource dar. Die kommerzielle Nutzung von Algen steht jedoch vor Herausforderungen wie regulatorischen Hürden und Verbraucherakzeptanz, die die Zulassung neuer Algenarten oder -produkte zeitaufwändig machen können. Trotz der überwindbaren Hindernisse für eine groß angelegte Algenproduktion erfordert der kommerzielle Erfolg ein koordiniertes Vorgehen. Algen dienen als biologische Fabriken mit einem großen Potenzial an wertvollen Nährstoffen, darunter Fettsäuren, Carotinoide und Proteine. Diese bieten nicht nur Möglichkeiten zur Nahrungsversorgung, sondern tragen auch zu gesundheitlichen Vorteilen bei, u. a. als bioäquivalente Primärquelle für langkettige Omega-3-Fettsäuren, Antioxidantien und Polysaccharide zur Förderung der Darmgesundheit. Die Qualität und Sicherheit von Algen als Lebensmittel hängt in hohem Maße von den Anbaubedingungen ab und kann von diesen beeinflusst werden. Eine geschmackvolle Verarbeitung von Algen zu Produkten könnte die Akzeptanz erhöhen und ernährungsphysiologisch vollwertige Lebensmittel ermöglichen.

Abstract

Algae, categorized as macroalgae and microalgae, represent a promising resource. However, the commercial utilisation of algae faces challenges such as regulatory hurdles and consumer acceptance, which can make the approval of new algae species or products time-consuming. Despite the hurdles that can be overcome for large-scale algae production, commercial success requires a coordinated approach. Algae serve as biological factories with a large potential for valuable nutrients, including fatty acids, carotenoids and proteins. These not only provide nutritional opportunities but also contribute to health benefits, including as a bioequivalent primary source of long-chain omega-3 fatty acids, antioxidants and polysaccharides to promote gut health. The quality and safety of algae as a food depends largely on the cultivation conditions and can be influenced by these. Flavourful processing of algae into products could increase acceptance and enable nutritionally complete foods.



Publication History

Received: 09 February 2024

Accepted: 26 March 2024

Article published online:
07 October 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Myers SS, Smith MR, Guth S. et al. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu Rev Public Health 2017; 38: 259-277
  • 2 Breidenassel C, Schäfer AC, Melanie M. et al. The Planetary Health Diet in contrast to the food-based dietary guidelines of the German Nutrition Society (DGE). Ernährungs Umschau 2022; 69: 56-72
  • 3 Max-Rubner-Institut. Nationale Verzehrsstudie II: Wie sich Verbraucherinnen und Verbraucher in Deutschland ernähren. BMEL 2024; Im Internet: https://www.bmel.de/DE/themen/ernaehrung/gesunde-ernaehrung/nationale-verzehrsstudie-zusammenfassung.html
  • 4 Golden CD, Koehn JZ, Shepon A. et al. Aquatic foods to nourish nations. Nature 2021; 598: 315-320
  • 5 Diaz CJ, Douglas KJ, Kang K. et al. Developing algae as a sustainable food source. Frontiers in Nutrition. 2023 9.
  • 6 Kinley RD, Martinez-Fernandez G, Matthews MK. u. a. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production 2020; 259: 120836
  • 7 Dillehay TD, Ramírez C, Pino M. et al. Monte Verde: Seaweed, Food, Medicine, and the Peopling of South America. Science 2008; 320: 784-786
  • 8 Buckley S, Hardy K, Hallgren F. et al. Human consumption of seaweed and freshwater aquatic plants in ancient Europe. Nat Commun 2023; 14: 6192
  • 9 Araújo R, Vázquez Calderón F, Sánchez López J. et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front Mar Sci 2021; 7
  • 10 Spillias S, Valin H, Batka M. et al. Reducing global land-use pressures with seaweed farming. Nat Sustain 2023; 6: 380-390
  • 11 Alter T. Hrsg. Handbuch Lebensmittelhygiene: Praxisleitfaden mit wissenschaftlichen Grundlagen. 3. Neuausgabe. Hamburg: Behr’s Verlag; 2016
  • 12 Thoré ESJ, Muylaert K, Bertram MG. et al. Microalgae. Current Biology 2023; 33: R91-R95
  • 13 Europäische Kommission: Blaue Biowirtschaft– für einen starken und nachhaltigen Algensektor in der EU. Im Internet: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12780-714_de; Stand: 06.03.2024
  • 14 EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Turck D, Bresson J-L. et al. Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFSA Journal 2016; 14: e04594
  • 15 Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 establishing the Union list of novel foods in accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods (Text with EEA relevance)Text with EEA relevance 2023
  • 16 Europäische Kommission. Food and Feed Information Portal, Im Internet: https://ec.europa.eu/food/food-feed-portal/screen/novel-food-catalogue/search; Stand: 06.03.2024
  • 17 Barbier M, Araújo R, Rebours C. et al. Development and objectives of the PHYCOMORPH European Guidelines for the Sustainable Aquaculture of Seaweeds (PEGASUS). Botanica Marina 2020; 63: 5-16
  • 18 Mendes MC, Navalho S, Ferreira A. et al. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022: 11 1871;
  • 19 Boukid F, Castellari M. Food and Beverages Containing Algae and Derived Ingredients Launched in the Market from 2015 to 2019: A Front-of-Pack Labeling Perspective with a Special Focus on Spain. Foods 2021; 10: 173
  • 20 Mithril C, Dragsted LO, Meyer C. et al. Dietary composition and nutrient content of the New Nordic Diet. Public Health Nutrition 2013; 16: 777-785
  • 21 Circuncisão AR, Catarino MD, Cardoso SM. et al. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Marine Drugs 2018; 16: 400
  • 22 Boukid F, Castellari M. Food and Beverages Containing Algae and Derived Ingredients Launched in the Market from 2015 to 2019: A Front-of-Pack Labeling Perspective with a Special Focus on Spain. Foods 2021; 10: 173
  • 23 Lafarga T. Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Research 2019; 41: 101566
  • 24 Salem NJ, Eggersdorfer M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition?. Current Opinion in Clinical Nutrition & Metabolic Care 2015; 18: 147
  • 25 Burdge GC, Wootton SA. Conversion of α-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr 2002; 88: 411-420
  • 26 Willett W, Rockström J, Loken B. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 2019; 393: 447-492
  • 27 Becker W. 18 Microalgae in human and animal nutrition. In: Handbook of microalgal culture: biotechnology and applied phycology. Wiley Online Library; 2004
  • 28 Atalah E, Cruz CMH, Izquierdo MS. et al. Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture 2007; 270: 178-185
  • 29 Sørensen M, Berge GM, Reitan KI. et al. Microalga Phaeodactylum tricornutum in feed for Atlantic salmon (Salmo salar) – Effect on nutrient digestibility, growth and utilization of feed. Aquaculture 2016; 460: 116-123
  • 30 Sarker PK, Kapuscinski AR, McKuin B. et al. Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Sci Rep 2020; 10: 19328
  • 31 Arterburn LM, Oken HA, Bailey Hall E. et al. Algal-oil capsules and cooked salmon: nutritionally equivalent sources of docosahexaenoic acid. J Am Diet Assoc 2008; 108: 1204-1209
  • 32 Stiefvatter L, Lehnert K, Frick K. et al. Oral Bioavailability of Omega-3 Fatty Acids and Carotenoids from the Microalgae Phaeodactylum tricornutum in Healthy Young Adults. Marine Drugs 2021; 19: 700
  • 33 Ryan L, Fraser A, Symington A. Algal-oil supplements are a viable alternative to fish-oil supplements in terms of docosahexaenoic acid (22:6 n -3; DHA). Proc Nutr Soc 2013; 72: E96
  • 34 Ryan AS, Keske MA, Hoffman JP. et al. Clinical Overview of Algal-Docosahexaenoic Acid: Effects on Triglyceride Levels and Other Cardiovascular Risk Factors. American Journal of Therapeutics 2009; 16: 183-192
  • 35 van Ginneken VJ, Helsper JP, de Visser W. et al. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids in Health and Disease 2011; 10: 104
  • 36 Coleman B, Van Poucke C, Dewitte B. et al. Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods 2022; 5: 100139
  • 37 Xia S, Gao B, Fu J. et al. Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. Journal of Bioscience and Bioengineering 2018; 126: 723-729
  • 38 Yao L, Gerde JA, Lee S-L. et al. Microalgae Lipid Characterization. J Agric Food Chem 2015; 63: 1773-1787
  • 39 Srinivasan B, Kesavan RK, Babu PAS. et al. Functional Foods Enriched with Marine Microalga Nannochloropsis oculata as a Source of ω-3 Fatty Acids. Food Technology and Biotechnology 2014; 52: 292-299
  • 40 Fradique M, Batista AP, Nunes MC. et al. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT - Food Science and Technology 2013; 50: 312-319
  • 41 Renaud SM, Thinh L-V, Parry DL. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 1999; 170: 147-159
  • 42 Maki KC, Yurko-Mauro K, Dicklin MR. et al. A new, microalgal DHA- and EPA-containing oil lowers triacylglycerols in adults with mild-to-moderate hypertriglyceridemia. Prostaglandins, Leukotrienes and Essential Fatty Acids 2014; 91: 141-148
  • 43 Lager S, Ramirez VI, Acosta O. et al. Docosahexaenoic Acid Supplementation in Pregnancy Modulates Placental Cellular Signaling and Nutrient Transport Capacity in Obese Women. J Clin Endocrinol Metab 2017; 102: 4557-4567
  • 44 Dawczynski C, Dittrich M, Neumann T. et al. Docosahexaenoic acid in the treatment of rheumatoid arthritis: A double-blind, placebo-controlled, randomized cross-over study with microalgae vs. sunflower oil. Clin Nutr 2018; 37: 494-504
  • 45 Gibson RA, Neumann MA, Makrides M. Effect of dietary docosahexaenoic acid on brain composition and neural function in term infants. Lipids 1996; 31: S177-S181
  • 46 Montgomery P, Spreckelsen TF, Burton A. et al. Docosahexaenoic acid for reading, working memory and behavior in UK children aged 7-9: A randomized controlled trial for replication (the DOLAB II study). PLoS One 2018; 13: e0192909
  • 47 Parletta N, Zarnowiecki D, Cho J. et al. People with schizophrenia and depression have a low omega-3 index. Prostaglandins Leukot Essent Fatty Acids 2016; 110: 42-47
  • 48 Bentsen H, Landrø NI. Neurocognitive effects of an omega-3 fatty acid and vitamins E+C in schizophrenia: A randomised controlled trial. Prostaglandins Leukot Essent Fatty Acids 2018; 136: 57-66
  • 49 Lafarga T, Fernández-Sevilla JM, González-López C. et al. Spirulina for the food and functional food industries. Food Research International 2020; 137: 109356
  • 50 Sun H, Wang Y, He Y. et al. Microalgae-Derived Pigments for the Food Industry. Marine Drugs 2023; 21: 82
  • 51 Ma B, Lu J, Kang T. et al. Astaxanthin supplementation mildly reduced oxidative stress and inflammation biomarkers: a systematic review and meta-analysis of randomized controlled trials. Nutrition Research 2022; 99: 40-50
  • 52 Fakhri S, Abbaszadeh F, Dargahi L. et al. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacological Research 2018; 136: 1-20
  • 53 EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA). Turck D, Castenmiller J. et al. Safety of astaxanthin for its use as a novel food in food supplements. EFSA Journal 2020; 18: e05993
  • 54 Miyashita K, Beppu F, Hosokawa M. et al. Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Archives of Biochemistry and Biophysics 2020; 686: 108364
  • 55 Din NAS, Mohd AlayudinʼS, Sofian-Seng NS, et al. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods. 2022 11. 2235
  • 56 Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C. et al. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends in Food Science & Technology 2021; 117: 163-181
  • 57 Hitoe S, Shimoda H. Seaweed Fucoxanthin Supplementation Improves Obesity Parameters in Mild Obese Japanese Subjects. Functional Foods in Health and Disease 2017; 7: 246-262
  • 58 Kopp LJ. Die Mikroalge Phaeodactylum tricornutum : Bioverfügbarkeit, Sicherheit und potenzieller gesundheitlicher Nutzen für die humane Ernährung. Universität Hohenheim, Stuttgart. 2023
  • 59 Duan X, Xie C, Hill DRA. et al. Bioaccessibility, Bioavailability and Bioactivities of Carotenoids in Microalgae: A Review. Food Reviews International 2023; 0: 1-30
  • 60 Becker EW. Micro-algae as a source of protein. Biotechnology Advances 2007; 25: 207-210
  • 61 Wang Y, Tibbetts SM, McGinn PJ. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021; 10: 3002
  • 62 Nosworthy MG, Franczyk AJ, Medina G. et al. Effect of Processing on the in Vitro and in Vivo Protein Quality of Yellow and Green Split Peas (Pisum sativum). J Agric Food Chem 2017; 65: 7790-7796
  • 63 Bošković Cabrol M, Glišić M, Baltić M. et al. White and honey Chlorella vulgaris: Sustainable ingredients with the potential to improve nutritional value of pork frankfurters without compromising quality. Meat Science 2023; 198: 109123
  • 64 Corinaldesi C, Barone G, Marcellini F. et al. Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Marine Drugs 2017; 15: 118
  • 65 Yadav M, Rani K, Sandal N. et al. An approach towards safe and sustainable use of the green alga Chlorella for removal of radionuclides and heavy metal ions. J Appl Phycol 2022; 34: 2117-2133
  • 66 Tibbetts SM, Milley JE, Lall SP. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 2015; 27: 1109-1119
  • 67 MacArtain P, Gill CIR, Brooks M. et al. Nutritional Value of Edible Seaweeds. Nutrition Reviews 2008; 65: 535-543
  • 68 Hofer SJ, Liang Y, Zimmermann A. et al. Spermidine-induced hypusination preserves mitochondrial and cognitive function during aging. Autophagy 2021; 17: 2037-2039
  • 69 Atanasov J, Schlörmann W, Trautvetter U. et al. The effects of β-glucans on intestinal health. Ernahrungs Umschau 2020; 52-59
  • 70 Hentati F, Tounsi L, Djomdi D. et al. Bioactive Polysaccharides from Seaweeds. Molecules 2020; 25: 3152
  • 71 Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C. et al. Metabolites from Macroalgae and Its Applications in the Cosmetic Industry: A Circular Economy Approach. Resources 2020; 9: 101
  • 72 Villarruel-López A, Ascencio F, Nuño K. Microalgae, a Potential Natural Functional Food Source – a Review. Pol J Food Nutr Sci 2017; 67: 251-263
  • 73 Zhu F, Du B, Xu B. A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids 2016; 52: 275-288
  • 74 Ciecierska A, Drywień ME, Hamulka J. Nutraceutical functions of beta-glucans in human nutrition. Rocz Panstw Zakl Hig 2019; 315-324
  • 75 Gill SK, Rossi M, Bajka B. et al. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol 2021; 18: 101-116
  • 76 Severo IA, Dias RR, do Nascimento TC. et al. Microalgae-derived polysaccharides: Potential building blocks for biomedical applications. World J Microbiol Biotechnol 2022; 38: 150
  • 77 Gouda M, Tadda MA, Zhao Y. et al. Microalgae Bioactive Carbohydrates as a Novel Sustainable and Eco-Friendly Source of Prebiotics: Emerging Health Functionality and Recent Technologies for Extraction and Detection. Frontiers in Nutrition. 2022 9. 806692
  • 78 Yin G, Li W, Lin Q. et al. Dietary administration of laminarin improves the growth performance and immune responses in Epinephelus coioides. Fish & Shellfish Immunology 2014; 41: 402-406
  • 79 Scientific Opinion on the safety of ‘yeast beta-glucans’ as a Novel Food ingredient. EFSA Journal.
  • 80 Frick K, Ebbing T, Yeh Y-C. et al. Beta-glucan production of Phaeodactylum tricornutum, Monodopsis subterranea and Cylindrotheca fusiformis during nitrogen depletion. J Appl Phycol 2023; 35: 2607-2618
  • 81 Stiefvatter L, Neumann U, Rings A. et al. The Microalgae Phaeodactylum tricornutum Is Well Suited as a Food with Positive Effects on the Intestinal Microbiota and the Generation of SCFA: Results from a Pre-Clinical Study. Nutrients 2022; 14: 2504
  • 82 Carballo C, Chronopoulou EG, Letsiou S. et al. Antioxidant capacity and immunomodulatory effects of a chrysolaminarin-enriched extract in Senegalese sole. Fish Shellfish Immunol 2018; 82: 1-8
  • 83 Reis B, Gonçalves AT, Santos P. et al. Immune Status and Hepatic Antioxidant Capacity of Gilthead Seabream Sparus aurata Juveniles Fed Yeast and Microalga Derived β-Glucans. Mar Drugs. 2021 19. 653
  • 84 Stiefvatter L, Frick K, Lehnert K. et al. Potentially Beneficial Effects on Healthy Aging by Supplementation of the EPA-Rich Microalgae Phaeodactylum tricornutum or Its Supernatant – A Randomized Controlled Pilot Trial in Elderly Individuals. Marine Drugs 2022; 20: 716
  • 85 Bundeszentrum für Ernährung. Algen. Im Internet: https://www.bzfe.de/lebensmittel/trendlebensmittel/algen/; Stand: 20.12.2023
  • 86 Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Sushi-Blätter häufig mit Schadstoffen belastet. Im Internet: https://www.bvl.bund.de/SharedDocs/Pressemitteilungen/01_lebensmittel/2020/2020_05_28 _PI_Sushi-Blaetter.html; Stand: 05.01.2024
  • 87 Matos ÂP. The Impact of Microalgae in Food Science and Technology. Journal of the American Oil Chemists’ Society 2017; 94: 1333-1350
  • 88 Mellor C, Embling R, Neilson L. et al. Consumer Knowledge and Acceptance of “Algae” as a Protein Alternative: A UK-Based Qualitative Study. Foods 2022; 11: 1703
  • 89 Grahl S, Strack M, Mensching A. et al. Alternative protein sources in Western diets: Food product development and consumer acceptance of spirulina-filled pasta. Food Quality and Preference 2020; 84: 103933
  • 90 Boukid F, Baune M-C, Gagaoua M. et al. Seafood alternatives: assessing the nutritional profile of products sold in the global market. Eur Food Res Technol 2022; 248: 1777-1786
  • 91 Barone GD, Cernava T, Ullmann J. et al. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon 2023; e14708
  • 92 Boukid F, Baune M-C, Gagaoua M. et al. Seafood alternatives: assessing the nutritional profile of products sold in the global market. Eur Food Res Technol 2022; 248: 1777-1786
  • 93 Caporgno MP, Mathys A. Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. Front Nutr 2018; 5: 58
  • 94 Ullmann J, Grimm D. Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Org Agr 2021; 11: 261-267