Synthesis
DOI: 10.1055/a-2356-8297
paper

A Domino One-Pot Approach to Functionalized Benzonitriles from 2-[(3-Hydroxy/acetoxy)propyn-1-yl]benzamides

Sindoori R. Nair
,
Bhavani Shankar Chinta
,
Financial support from the Science and Engineering Research Board, Department of Science and Technology (SERB-DST) (CRG/2023/001303) and the Department of Higher Education, India (MHRD-INDIA) through IoE funding (SB20210792CYMHRD008189) is acknowledged. B.S.C. thanks the Indian Institute of Technology Madras (IIT Madras) for his HTRA doctoral fellowship. S.R.N. thanks the Council of Scientific and Industrial Research, India (CSIR-INDIA) for her SRF fellowship.


Abstract

Functionalized benzonitriles, α,β-epoxyketones and β-hydroxy-α-haloketones are found in numerous medicinally important molecules, whilst benzonitriles in combination with any of these functional groups may be of interest to medicinal chemists. However, the simultaneous incorporation of a nitrile group and these functional groups on the aromatic ring is a challenging task. Herein, we report a strategy for the rapid and simultaneous construction of structurally novel benzonitrile derivatives, possessing either an ortho-α-iodo-β-hydroxyketone, an α,β-epoxyketone or an α,β-enone, from unprotected, 2-[(3-hydroxy/acetoxy)propyn-1-yl]benzamides. This process involves NXS-promoted dehydration–halohydration followed by DIPEA-mediated epoxide formation (from alcohols). We have developed both stepwise and one-pot strategies to improve the synthetic efficiency. No metal catalyst is employed and the method exhibits good substrate scope and yields.

Supporting Information



Publication History

Received: 12 April 2024

Accepted after revision: 13 June 2024

Accepted Manuscript online:
28 June 2024

Article published online:
15 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
    • 1b Fleming FF, Wang Q. Chem. Rev. 2003; 103: 2035
    • 1c Hibi S, Ueno K, Nagato S, Kawano K, Ito K, Norimine Y, Takenaka O, Hanada T, Yonaga M. J. Med. Chem. 2012; 55: 10584
    • 1d Feng J, Zhang Z, Wallace MB, Stafford JA, Kaldor SW, Kassel DB, Navre M, Shi L, Skene RJ, Asakawa T, Takeuchi K, Xu R, Webb DR, Gwaltney SL. J. Med. Chem. 2007; 50: 2297
    • 1e Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 1f Wang X, Wang Y, Li X, Yu Z, Song C, Du Y. RSC Med. Chem. 2021; 12: 1650
    • 1g Patani GA, LaVoie EJ. Chem. Rev. 1996; 96: 3147
    • 1h Oehlrich D, Prokopcova H, Gijsen HJ. M. Bioorg. Med. Chem. Lett. 2014; 24: 2033
    • 1i Meanwell NA. J. Med. Chem. 2018; 61: 5822
  • 2 Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Wiley-VCH; Weinheim: 1989
    • 3a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
    • 3b Rosenmund KW, Struck E. Ber. Dtsch. Chem. Ges. B 1919; 52: 1749
    • 4a Ellis GP, Romney-Alexander TM. Chem. Rev. 1987; 87: 779
    • 4b Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 4c Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
    • 4d Anderson BA, Bell EC, Ginah FO, Harn NK, Pagh LM, Wepsiec JP. J. Org. Chem. 1998; 63: 8224
    • 5a Zhao H, Sun X, Xu D, Zhu Q, Zhu Y, Dong Z. J. Colloid Interface Sci. 2020; 565: 177
    • 5b Vilím J, Knaus T, Mutti FG. Angew. Chem. Int. Ed. 2018; 57: 14240
    • 5c Leggio A, Belsito EL, Gallo S, Liguori A. Tetrahedron Lett. 2017; 58: 1512
    • 5d Jagadeesh RV, Junge H, Beller M. ChemSusChem 2015; 8: 92
    • 5e Rapeyko A, Climent MJ, Corma A, Concepción P, Iborra S. ChemSusChem 2015; 8: 3270
    • 5f Qi Z, Hu C, Zhong Y, Cai C, Lu G.-P. Org. Chem. Front. 2021; 8: 3137
    • 6a Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 6b Kim J, Chang S. J. Am. Chem. Soc. 2010; 132: 10272
    • 6c Zhang G, Ren X, Chen J, Hu M, Cheng J. Org. Lett. 2011; 13: 5004
    • 6d Ding S, Jiao N. J. Am. Chem. Soc. 2011; 133: 12374
    • 6e Sawant DN, Wagh YS, Tambade PJ, Bhatte KD, Bhanage BM. Adv. Synth. Catal. 2011; 353: 781
    • 6f Hosoi K, Nozaki K, Hiyama T. Org. Lett. 2002; 4: 2849
    • 6g Chiba S, Zhang L, Lee J.-Y. J. Am. Chem. Soc. 2010; 132: 7266
    • 6h Reeves JT, Malapit CA, Buono FG, Sidhu KP, Marsini MA, Sader A, Fandrick KR, Busacca CA, Senanayake CH. J. Am. Chem. Soc. 2015; 137: 9481
    • 6i Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
    • 7a Coppola A, Sánchez-Alonso P, Sucunza D, Burgos C, Alajarín R, Alvarez-Builla J, Mosquera ME. G, Vaquero JJ. Org. Lett. 2013; 15: 3388
    • 7b Zhao W, Montgomery J. Angew. Chem. Int. Ed. 2015; 54: 12683
    • 7c Pan S, Wu F, Yu R, Chen W. J. Org. Chem. 2016; 81: 1558
    • 7d Majhi B, Ranu BC. Org. Lett. 2016; 18: 4162
    • 7e Luo B, Gao J.-M, Lautens M. Org. Lett. 2016; 18: 4166
    • 7f Li S, Hong H, Han L, Zhang T, Wang Y, Zhu N. Chin. J. Org.Chem.. 2018; 38: 304
    • 7g Gao Q, Shang Y, Song F, Ye J, Liu Z.-S, Li L, Cheng H.-G, Zhou Q. J. Am. Chem. Soc. 2019; 141: 15986
    • 7h Bao W, Gao Z.-P, Jin D.-P, Xue C.-G, Liang H, Lei L.-S, Xu X.-T, Zhang K, Wang S.-H. Chem. Commun. 2020; 56: 7641

      For bioactive molecules and natural products possessing α,β-epoxyketones, see:
    • 8a Hanada K, Tamai M, Yamagishi M, Ohmura S, Sawada J, Tanaka I. Agric. Biol. Chem. 1978; 42: 523
    • 8b Mirzaei H, Emami S. Eur. J. Med. Chem. 2016; 121: 610
    • 8c Nettles JH, Li H, Cornett B, Krahn JM, Snyder JP, Downing KH. Science 2004; 305: 866
    • 8d Hayashi K, Nakagawa M, Nakayama M. J. Antibiot. 1994; 47: 1104
    • 8e Kawamura S, Unno Y, Asai A, Arisawa M, Shuto S. Org. Biomol. Chem. 2013; 11: 6615
    • 8f Voorhees PM, Orlowski RZ. Annu. Rev. Pharmacol. Toxicol. 2006; 46: 189
    • 8g Borissenko L, Groll M. Chem. Rev. 2007; 107: 687
    • 8h Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN, Jiang J, Laidig GJ, Lewis ER, Parlati F, Shenk KD, Smyth MS, Sun CM, Vallone MK, Woo TM, Molineaux CJ, Bennett MK. Cancer Res. 2007; 67: 6383
    • 8i Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, Demo SD, Bennett MK, van Leeuwen FW, Chanan-Khan AA, Orlowski RZ. Blood 2007; 110: 3281
    • 8j Groll M, Kim KB, Kairies N, Huber R, Crews CM. J. Am. Chem. Soc. 2000; 122: 1237
    • 8k Kawamura S, Unno Y, Asai A, Arisawa M, Shuto S. Bioorg. Med. Chem. 2014; 22: 3091
  • 9 Lauret C. Tetrahedron: Asymmetry 2001; 12: 2359 ; and references cited therein
    • 10a Carey FA, Sundberg RJ. In Advanced Organic Chemistry, Part B: Reactions and Synthesis . Springer; New York: 2007: 1091-1103
    • 10b Mandal AK, Iqbal J. Tetrahedron 1997; 53: 7641
    • 10c Loeker F, Leitner W. Chem. Eur. J. 2000; 6: 2011
    • 10d Wu Y, Zhou G, Meng Q, Tang X, Liu G, Yin H, Zhao J, Yang F, Yu Z, Luo Y. J. Org. Chem. 2018; 83: 13051
    • 10e Crivoi D, Segarra AM, Medina F. J. Catal. 2016; 334: 120
    • 10f Mahato S, Santra S, De A, Chatterjee R, Zyryanov GV, Majee A. ChemistrySelect 2018; 3: 7596
    • 10g Luo W, Yu Z, Qiu W, Yang F, Liu X, Tang J. Adv. Synth. Catal. 2007; 349: 1033
    • 10h Wang Y, Ye J, Liang X. Tetrahedron 2011; 67: 5289
    • 10i Choudary BM, Kantam ML, Ranganath KV, Mahendar K, Sreedhar B. J. Am. Chem. Soc. 2004; 126: 3396
    • 11a Schlemmer C, Andernach L, Schollmeyer D, Straub BF, Opatz T. J. Org. Chem. 2012; 77: 10118
    • 11b Liu G, Zhou Y, Ye D, Zhang D, Ding X, Jiang H, Liu H. Adv. Synth. Catal. 2009; 351: 2605
    • 11c Yang C, Zhang X, Negrerie DZ, Du Y, Zhao K. J. Org. Chem. 2015; 80: 5320
    • 11d Chary RG, Dhananjaya G, Prasad KV, Vaishaly S, Ganesh YS. S, Dulla BK, Kumar KS, Pal M. Chem. Commun. 2014; 50: 6797
    • 11e Kundu NG, Khan MW. Tetrahedron Lett. 1997; 38: 6937
    • 11f Kanazawa C, Terada M. Chem. Asian J. 2009; 4: 1668
    • 11g Bianchi G, Chiarini M, Marinelli F, Rossi L, Arcadi A. Adv. Synth. Catal. 2010; 352: 136
    • 11h Brahmchari D, Verma AK, Mehta S. J. Org. Chem. 2018; 83: 3339
    • 11i Sakai N, Annaka K, Fijita A, Sato A, Konakahara T. J. Org. Chem. 2008; 73: 4160
    • 11j Mehta S, Waldo JP, Neuenswander B, Lushington GH, Larock RC. ACS Comb. Sci. 2013; 15: 247
    • 11k Bantreil X, Bourderioux A, Mateo P, Hagerman CE, Selkti M, Brachet E, Belmont P. Org. Lett. 2016; 18: 4814
    • 11l Yao T, Larock RC. J. Org. Chem. 2003; 68: 5936
    • 11m Mancuso R, Ziccarelli I, Armentano D, Marino N, Giofre SV, Gabriele B. J. Org. Chem. 2014; 79: 3506
    • 11n Qiu G, Li Y, Ma L, Zhou H. Org. Chem. Front. 2017; 4: 1069
    • 12a Yao T, Larock RC. J. Org. Chem. 2005; 70: 1432
    • 12b Mehta S, Yao T, Larock RC. J. Org. Chem. 2012; 77: 10938
    • 12c Wang R.-X, Yuan S.-T, Liu J.-B, Wu J, Qiu G. Org. Biomol. Chem. 2018; 16: 4501
    • 12d Sun L, Liu P, Wang J, Lu P, Wang Y. J. Org. Chem. 2017; 82: 8407
    • 13a Tharra P, Baire B. J. Org. Chem. 2015; 80: 8314
    • 13b Tharra P, Baire B. Chem. Commun. 2016; 52, 12147
    • 13c Tharra P, Baire B. Chem. Commun. 2016; 52: 14290
    • 13d Tharra P, Baire B. Org. Biomol. Chem. 2017; 15: 5579
    • 13e Tharra P, Baire B. Chem. Eur. J. 2017; 23: 2014
    • 13f Tharra P, Baire B. Org. Lett. 2018; 20: 1118
    • 13g Roy D, Tharra P, Baire B. Asian J. Org. Chem. 2018; 7: 1015
    • 13h Baire B, Yadav B. Chem. Commun. 2021; 57: 12796
    • 13i Roy D, Baire B. Chem. Eur. J. 2021; 27: 4009
    • 13j Roy D, Tharra P, Baire B. Org. Lett. 2021; 23: 5605
    • 13k Roy D, Tharra P, Baire B. Chem. Commun. 2022; 58: 10210
    • 13l Yadav B, Baire B. Adv. Synth. Catal. 2022; 364: 4305
    • 13m Roy D, Baire B. Angew. Chem. Int. Ed. 2023; 62: e202304
    • 14a Sadhukhan S, Baire B. Adv. Synth. Catal. 2018; 360: 298
    • 14b Sadhukhan S, Baire B. Chem. Eur. J. 2019; 25: 9816
    • 14c Sadhukhan S, Baire B. ChemistrySelect 2017; 2: 8500
    • 14d Sadhukhan S, Baire B. Org. Lett. 2018; 20: 1748
    • 14e Sadhukhan S, Baire B. ChemistrySelect 2019; 4: 3376
    • 14f Sadhukhan S, Mondal S, Baire B. Eur. J. Org. Chem. 2022; e202101375
    • 14g Sadhukhan S, Baire B. J. Org. Chem. 2022; 87: 5530
    • 14h For a review, see: Sadhukhan S, Jampani S, Baire B. Chem. Eur. J. 2020; 26: 7145 ; and references cited therein
    • 15a Chinta BS, Sanapa H, Vasikarla KP, Baire B. Org. Biomol. Chem. 2018; 16: 3947
    • 16a Christophersen C. Acta Chem. Scand. 1985; 39B: 517
    • 16b The Chemistry of Functional Groups . In The Chemistry of Halides, Pseudo-Halides and Azides, Suppl. D2. Patai S, Rappoport Z. John Wiley & Sons; Chichester: 1995: 709-785
    • 16c Cabanal-Duvillard I, Berrier J.-F, Royer J, Husson H.-P. Tetrahedron Lett. 1998; 39, 5181
    • 16d Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed. Wiley-VCH; Weinheim: 1998
    • 16e Thomas G. Medicinal Chemistry: An Introduction . John Wiley & Sons; Chichester: 2000
    • 16f Nilewski C, Geisser RW, Carreira EM. Nature 2009; 457: 573
    • 16g Snyder SA, Tang Z.-Y, Gupta R. J. Am. Chem. Soc. 2009; 131: 5744
    • 16h Hennessy EJ, Adam A, Aquila BM, Castriotta LM, Cook D, Hattersley M, Hird AW, Hattersley C, Kamhi VM, Laing NM, Li D, MacIntyre T, Omer CA, Oza V, Patterson T, Repik G, Rooney MT, Saeh JC, Sha L, Vasbinder MM, Wang H, Vasbinder D. J. Med. Chem. 2013; 56: 9897
    • 16i Nicolaou KC, Valiulin RA. Org. Biomol. Chem. 2013; 11: 4154
  • 17 CCDC2257363 (6i) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. Further details are given in the supporting information file.
  • 18 CCDC2257361 (8c) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. Further details are given in the supporting information file.